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Abstract. Permissionless Decentralized networks, such as blockchains, are
typified by self-determined participation. Unfortunately, this has resulted in
lack of geographic diversity in several blockchains due to benefits emanating
from network proximity between nodes and the higher availability of comput-
ing infrastructure in certain areas. Lack of diversity in the resulting network
can make it susceptible to geopolitical events, blockchain or cryptocurrency-
adverse law-making, and natural disasters. While there exists a growing body
of work in verifiable localization in distributed systems, very little exists on
mechanisms promoting geographic diversity in distributed systems. Our work
sets out to initiate the study of the incentivization of geographic diversity in
permissionless distributed systems. We design a family of mechanisms that
incentivize network nodes to truthfully declare and diversify their locations.
In particular, we provide a game theoretic analysis to derive the conditions
under which truthful location reporting is an equilibrium. The conditions
relate the offered rewards (for geo-diversity) and the success probability of
the underlying localization protocol to detect falsely claimed locations. Our
proposed mechanisms assume an underlying secure node localization protocol
based solely on round-trip times (RTT) measurements from participants of
the protocol. We initiate a formal model to reason about such localization
protocols and identify network topologies that are ideal for resisting location
spoofing attempts. We evaluate effectiveness of our incentive mechanisms in
different scenarios of node placement and underlying network structure. Our
validation is based on two RTT data sets we use to derive maximal spoofing
distance and attack success rates that adversarial nodes can achieve when
operating alone or in collusion with other nodes.

Keywords: Game theory for security, privacy, and blockchain · Blockchain
applications · Network and distributed system security

1 Introduction

Decentralized systems such as blockchains typically rely on multiple networked nodes
that are connected via the Internet and ensure the immutability and liveness of an
underlying ledger. In Bitcoin [23], a permissionless protocol, the number of block-
producing nodes varies, and generally, anyone can participate in block-production
by running the mining software on suitable equipment. Thus, in the permissionless
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setting, node selection is driven only by self-interest without any central coordination.
Furthermore, some proof-of-stake blockchains–even when permissionless–may imple-
ment mechanisms that limit committee sizes, i.e., the number of nodes dedicated
to consensus, block-production, synchronization tasks and data dissemination. For
example, the synchronization committee in Ethereum is fixed to 512 nodes [12], and
Cosmos has 200 active validators [3].

As a result, the protocol may depend on a small set of nodes without any guar-
antees as to where the nodes are located geographically. In permissioned protocols,
on the other hand, the set of nodes running the protocol can be suitably curated
to meet various objectives. These considerations become relevant in terms of the
decentralization of the resulting system.

We argue that a decentralized system should also be decentralized in the geo-
graphical sense. Moreover, the Internet topology does not span the globe in a uniform
manner; hence a set of nodes that is geographically diverse might not result in a
uniform set of occupied vertices on the Internet graph, and vice versa. Geographic
diversity is also often at odds with economical incentives for node operators: a rational
operator aims to reduce the cost for computing power and bandwidth, selecting data
centers in strategic locations with high-speed Internet access. Especially for block
production nodes, a location that is well connected and offers low-latency communica-
tion can make a difference in terms of rewards obtained. Depending on the consensus
mechanism, differences in latency and throughput can lead to block races, where a
node is more likely to be successful in advancing the chain by proposing a new block
if the node is well connected and the generated block reaches the other nodes in time.
Observations in the wild confirm these conjectures, and they show, for example, an ag-
glomeration of nodes around important Internet network hubs, such as Frankfurt [9,8].

A consequence of geographic non-diversity is that geopolitical issues, censorship,
natural disasters, or other events, even if focused on one country or area, can affect
a considerable proportion of a distributed system. Therefore, it would be sensible
for blockchain system communities to strive to make their systems more resilient by
ensuring a degree of geographic dispersal. However, this poses a difficult conundrum:
how to counter network centralization incentives in a way that the system can span
to cover remote and less connected regions where it would be required for operators
to tolerate economically less favorable locations?
Contributions. We address these considerations by presenting a first study of
incentive mechanisms that promote geographic diversity in decentralized systems.
We design a reward scheme for node operators that integrates a geography-based
reward and promotes geographic diversity that is compatible with any underlying
decentralized blockchain system that supports smart contracts.
To ensure that node operators cannot claim a geographic bonus they are not eligible
for, we devise a way for the system to verify node locations. We develop a formal
model to reason about geolocation verification protocols and identify the salient
graph-theoretic properties of the underlying network to facilitate effective verification.
The basis of verification is the fact that communication speeds are upper bounded
in the physical layer and nodes can only spoof their location to be further but not
closer to a verification point that sends ping packets and measures round trip times
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(RTTs). It follows that an appropriately distributed set of nodes can catch deviations
if a node tries to spoof their location.

Given our model, we develop a mechanism that uses RTT measurements to
promote truthful reporting of the operators’ locations. A key feature of the mech-
anism is a distributed location verification algorithm. Using deposits and rewards for
successful completion of the geolocation sub-protocol, we create counter incentives
for nodes that misreport their location. We provide a game-theoretic analysis of
our mechanism, establishing that truthful reporting is a Nash equilibrium. We then
analyze the mechanism in the presence of coalitions of players acting together, and
we derive sufficient conditions for collusion-resistance.

We conclude with simulations using two real-world datasets that provide network
locations and RTT measurements. We determine the maximum spoofing distance
that the system can tolerate in the presence of collusions, for both uniform locations
and targeted node placement. We estimate the probability of detection of malicious
nodes as well as false positive rates in the setting where coalitions of players act
together. Our experiments show the practical relevance of our approach and the
possibility to deploy our mechanism in real-world decentralized systems.

2 Background and Related Work

Our approach is fundamentally based on geolocation and geolocalization on the
Internet. In particular, we focus on delay-based geolocation which, compared to
global positioning systems (GPS), requires neither a specialized radio frequency
infrastructure nor any third party that emits a trusted broadcast signal. It utilizes
the existing network connection and is uniquely suited for the localization of nodes
in a decentralized system, such as block-producing nodes in a blockchain.
Delay-based Location Verification. There are many approaches that measure the
delay a message experiences when traversing the Internet, see, e.g., [24,2,14,16,15,13],
and the survey in [29]. The network delays between a host and so-called landmarks
or anchors with known locations are translated to distances by means of an empirical
speed fit, relying on the assumption that the propagation speed in electrical conduc-
tors and optical cables is reasonably constant. A rough estimate of a packet’s speed
on the Internet is around 66% of the speed of light. Although jitter and routing add
noise, the geographic (Great Circle) distance correlates well with measured delays.
There have been many works on how to map delays to distances more accurately;
see, e.g., [18,25,11,19,20,10].

Regardless of the exact distance calculation, most delay-based geolocation protocols
are largely based on the following main steps:
1. A node makes a location claim (in terms of coordinates) and announces its IP

address (if not already known)
2. The landmarks/anchors conduct a series of measurements involving the IP address

of the node in question. Often, landmarks probe the node by sending one or more
pings and record the time the request was sent alongside the arrival time of the
response.
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3. Approximate distances are computed based on the delays, which in turn are
calculated from the transmission and arrival times of the messages

4. The distances obtained are used in trilateration/multilateration to determine the
unknown position or area of the node.

5. If the unknown position is “close enough” to the claimed location or area, the
location claim is verified.

Distance Manipulation Attacks. Most delay-based geolocalization mechanisms
are vulnerable to distance manipulation that can lead to location misreporting and
spoofing [1]. If geolocalization is based on standard ICMP utilities, an adversary can
misrepresent their location by affecting the creation and parsing of ICMP packets [1]
where sender and responder can independently and almost arbitrarily shorten or
increase measured round-trip times (RTTs). Paired with the ability to precompute
hypothetical delays between landmarks and the contrived location, an adversary can
spoof their location to the desired coordinates by delaying or advancing the respective
ping measurements.
Security of RTT Measurements and Secure Positioning. Standard ICMP
and TCP pinging methods do not feature cryptographic linking of the request with
the response, and thus distance manipulation is feasible. The initiator of a ping
measurement can encode an arbitrary timestamp for transmission of the ping, and
therefore the correctness of the transmission time cannot be verified. This extends to
the reception (and transmission time) at the responder. It is impossible to determine
whether the responding node delayed or sent the response prematurely. A way to turn
RTT measurements into a distance-bounding-like protocol is to introduce a nonce in
the variable-length data field of the ping to ensure that the request cannot be deflated4,
and thus an adversary cannot fake a shorter distance [17] (inflating is still feasible).

We consider this more secure variant of RTT measurements which is applicable
provided that the responder is restricted to a single position, i.e., cryptographic
material is not shared across multiple locations. Prior work in [6] investigates the
more general problem of secure positioning in the presence of a distributed malicious
prover; however, it does not address the case of dishonest or colluding verifiers, which
is a fundamental concern in decentralized settings.
Geometric Constraints. Constraint-based geolocation (CBG) [14] transforms delay
measurements to distance constraints and uses multilateration to infer the location of
the target host. The feasible area for the location estimate is formed by calculating the
intersection of k circles that are centered around each of the k landmarks, where the
circles themselves are defined by the radii that correspond to the maximum possible
distance between the target host and the respective landmark. A modification of
this technique is used in [17] and [26] to compute the confidence area of a location
estimate. A more general framework for contraint-based localization is presented
in [28], which determines the estimated target location as a region bounded by a set
of Bézier curves allowing for positive and negative constraints.
Decentralization. As CBG [14] and Octant [28] rely on trusted landmarks, it is
uncertain whether such schemes can find adoption in a decentralized context. The
4 To rule out man-in-the-middle attacks, the nonce can be used as part of a challenge-response type

mechanism; e.g., the responding node must apply a keyed hash function to the nonce.
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first approach to extend delay-based geolocation to a fully decentralized setup is
Verloc in [17], which performs measurements with a randomly chosen subset of nodes
acting as challengers instead of predefined landmarks. Using distributed and verifiable
randomness (VRF), VerLoc derives symmetric measurement sets for every node. After
a series of ping messages, every node announces their measured RTTs on a blockchain.
Each node can access the entire set of measured RTTs and verify the location claims
of other nodes by running Newton gradient descent on a coordinate grid based on
the latencies posted on-chain. If the claimed location of a node is statistically close
to the estimated location, the claim is verified. BFT-PoLoc [26] presents a similar
approach, but splits the process into a proof-of-internet-geometry mechanism and
a proof-of-location protocol. The proof-of-internet-geometry mechanism calibrates
the delay-to-distance mapping for every challenger in a Byzantine fortified manner
before the target location is verified by probing it with ping requests. None of these
works deal with the issue of incentivizing geographic diversity.
Game-theoretic Approaches. Although not directly related, the work in [4] is
conceptually interesting, as it presents security games for node localization through
verifiable multilateration in wireless sensor networks (WSNs). The authors define the
properties of verifiable multilateration as a non-cooperative two-player game where
one player places the verifiers in the monitored area and the other player controls
a malicious node. While the first player’s goal is to accurately locate any (malicious)
node, the second player tries to evade localization and possibly report false locations.

The paper in [22] also considers a game-theoretic view, but differs from our work as
the focus is on verifying the location of a single source, by appropriately incentivizing a
set of observers. The authors analyze proof-of-location as a signal network application
and define a notion called source identifiability, which is a necessary condition for
the existence of a mechanism where truthful signal reporting is a strict equilibrium.
Interestingly, their analysis shows that the geometric constraints of localization in
a two-dimensional plane imply that the source’s location can be truthfully elicited
only if it lies inside the convex hull of the observers.

3 Distributed Location Verification – A Formal Model

We now present our framework for secure node localization in network graphs based
on secure RTT measurements. We model the network where we wish to run the
localization protocol as a weighted graph where the edge weight represents the latency
(‘true’ RTT) between the two nodes. A participant in the localization protocol can
at best be ‘localized’ to one of the nodes of this graph. While an honest participant
in the localization protocol will claim the closest node of the graph as its location, a
malicious participant may claim any node as its location. The goal of the localization
protocol is to detect malicious claims based on RTTs reported by all the participating
nodes. Note that in the framework presented here, we assume at most one dishonest
node. In Sections 4 and 5, we discuss incentive-based extensions for the case of
multiple malicious nodes, who may collude with each other. Extending the formal
model presented in this section to the collusion case remains an open problem.
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Our graph-based modeling of the network differs from existing approaches in liter-
ature, where nodes can claim a set of coordinates as their location. A key motivation
for doing this is to be agnostic to the underlying RTT measurement procedure and
thus to be widely applicable. Another goal is to study the possible connection of the
localization problem with the rich literature of graph-theory. In fact, we establish an
important connection between the Geodetic set of a graph [5,7] and the maximum
distance that a malicious node can spoof its location by (discussed later). For a more
detailed comparison between coordinate-based and our graph-theoretic approach, we
refer the reader to Appendix C.

Network Graph. We start with a weighted and undirected graph G=(V,E) that
represents the entire network. The weights represent latencies or distances. We assume
that latencies are bidirectional. V represents all possible vertices/locations where a
node can be located. A⊆V represents the nodes participating in the localization
protocol. A is a non-empty subset of V with cardinality at least 2. Ai=A\{i} is the
set of nodes that measure RTTs to node i∈A, i.e., the reference set of node i. If the
system is comprised of n nodes in total, then ∥A∥=n and we assume ∥A̸=i∥=n−1,
i.e., no two nodes are ever at the same vertex.

(δ,A)-further-off Relation. We now present a simple characterization for a partic-
ipant in any RTT based localization protocol to successfully claim a location other
than its true location (i.e. to spoof a location) in a given network graph G. The idea is
simple: a participant (on her own) can only delay RTTs reported by other participants
but cannot shorten them. Thus, if A is the set of participants reporting RTTs to
i∈V \A, then node i can spoof a location j∈V \A if each participant in A is at some
location k such that the RTT between i and k is already smaller (or equal to) than the
RTT between each j and k. Thus, there is no need for i to have to shorten any RTT
measured to it by others. In such as case, we say that node location j is further-off from
i and can be spoofed by i. We capture this formally by defining a further-off relation.
In all this, we assume no collusion between the participants of the localization protocol.

Notation. In a graph G=(V,E), the length of the shortest path between vertices
i,j∈V is denoted by d(i,j)∈R≥0. It holds that d(i,j)=d(j,i), and d(i,j)>0 if i≠j, and
d(i,i)=0. Also, for any three vertices i, j and w, it holds that d(i,j)≤d(i,w)+d(w,j).

Definition. The (δ,A)-further-off relation denoted ⪯δ
A is parametrized on set A⊆V

and distance δ∈R≥0. Any vertex j∈V \A is (δ,A)-further off from vertex i∈V \A iff

i⪯δ
A j : d(i,k)≤d(j,k) ∧ d(i,j)≥δ ∀k∈A

Here we have put the additional constraint that j is at least δ away from i,
signifying that the further-off is interesting when node i spoofs a location j at least
δ away, as spoofing to very nearby locations is trivial.

(A,δ)-Geostable Graph. Using the notion of the further-off relation as defined
above, we describe our ideal graph, which we call a Geostable graph. Essentially a
given graph G is (A,δ)-Geostable for a set of participants A with parameter δ, if for
any new participant i∈V \A, there is always a participant k∈A which is ‘closer’ to
any ‘spoofing’ location j∈V \A than i. Here as before, the spoofing location j is at
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least ‘distance’ δ away from i. Thus, no i,j∈V \A, are in a (δ,A)-further-off relation,
i.e., ∀i,j∈V \A

i̸=j

¬
(
i⪯δ

A j
)
, which is equivalent to

∀i,j∈V \A
i̸=j

∃k∈A [d(i,k)>d(j,k)∨d(i,j)<δ]=∀ i,j∈V \A
i̸=j ∧ d(i,j)≥δ

∃k∈A d(i,k)>d(j,k)

Definition. A graph G=(V,E) is (A,δ)-Geostable (with respect to set A) iff

∀ i,j∈V \A
i̸=j ∧ d(i,j)≥δ

∃k∈A d(i,k)>d(j,k)

Thus the notion of Geostability tells us that if we can find a set A⊆V in a graph G,
such that no node in V \A is in a (δ,A)-further-off relation with j∈V \A, then no node
can spoof its location to a node location greater than (or equal to) δ away. This is so
because a simple algorithm that looks at mismatches between the reported RTTs and
the graph weights, can detect the spoofing attempt. Note the δ (we call it the maximum
spoofing distance) in the above definition is for the case when the spoofing node is on
its own (no collusion with any other node). Later in Section 5 we present an algorithm
to compute the maximum spoofing distance when upto t nodes may be colluding and
the localization algorithm is more relaxed, in the sense, that it allows upto a threshold
number of mismatches (k) between the reported RTTs and the graph weights. Also,
note that the Geostability notion does not consider any latency variation in the network.
But since δ is the maximum spoofing distance, reasonable jitter is unlikely to impact it
(we show experiments in Appendix G to establish this). Further, due to lack of space, we
show in appendix A, an interesting connection between Geostability and the (strong)
Geodetic set of a graph. In particular, we show that if the set of nodes participating in
the localization protocol (A) are located at the Geodetic set locations of the graph, no
node can spoof its location to any other node in V \A. As mentioned earlier, extending
the above notions and definitions to the case of collusion is an open problem, but
we present an incentive-based approach to handle collusion in the following section.

4 Generic Model of Games for Truthful Reporting and
Geo-diversity

In this section, we develop a game-theoretic framework to prevent spoofing in dis-
tributed localisation protocols, even when a set of participating nodes may be colluding.
We present a simple and abstract model that can serve as a starting point for studying
rewards and incentives when it comes to promoting geo diversity and to discouraging
users from trying to spoof their location.

A 2-tier Reward System. The simplest possible reward scheme that a system
designer could use would be a tiered system as follows: Tier 1 contains all the operators
who were not caught spoofing their location. In particular, a reward r is given to
these operators for playing honestly. Tier 2 is defined by determining a priori a set
of designated locations where we want to promote further participation of nodes.
Then for every active operator who was not caught spoofing her location, and whose
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reported location belongs to the designated regions, she receives an additional amount
g as a geo-dependent bonus.

We note that if we want to make the protocol more budget-efficient, we could set
r=0, i.e., we pay only the operators in the designated regions. Moreover, the operators
also receive rewards from block production. We assume these are not affected by the
game we consider here, i.e., whether they spoof their location or not, they will continue
producing and validating blocks, and hence receiving such rewards. Therefore, we
will not incorporate them in the game of interest here. The game proceeds as follows:
– In Phase 1, the protocol asks all operators to report their location and to also

submit a deposit d≥0.
– In Phase 2, the protocol runs an algorithm to determine whether the operators

are truthful. We treat this as a black box here. This algorithm can possibly ask
for further information from the nodes, such as RTT times.

– If at any point during Phase 1 or Phase 2, a node does not abide by the protocol, i.e.,
does not respond to whatever information the protocol asks, she loses her deposit.

– Finally, in Phase 3, the protocol issues payments as follows: Anyone who was
caught lying does not receive any payment. All other players receive back the
deposit d and a reward r. Among these players, the operators who are in designated
regions also receive the extra geographic bonus, g.

Strategy Space. At this level of description, we abstract away all the possible moves
of a player (which also depend on how exactly Phase 2 is implemented) and we view
this as a standard normal-form game, where each player has to decide independently
of the other players, among 2 actions: either she can decide to play honestly (denoted
by H), meaning that she reports truthfully and makes no attempt to fake her location,
or she can try to deviate, misreport and/or cheat on her claimed location (denoted
by C). Technically, cheating can occur in many ways depending on how the protocol
tries to verify the locations, but we feel it is insightful to start with this binary choice
for now. The motive for cheating here is to pretend that a node belongs to one of
the designated regions so as to receive the additional bonus of g. In Section 4.1, we
also discuss the possibility of collusions among players.

In order to analyze any verification protocol in line with the above model, we
define first some relevant parameters. Fix a player i, and let x be a strategy profile
for the other players, i.e., x contains a strategy choice for all players other than i, x∈
{H,C}n−1, where n is the total number of operators. Given that a verification protocol
is expected to have randomized decisions, we let ps(i,x) be the conditional probability
of i getting caught, when she tries to spoof her location, and given also that the
other operators behave according to x. Analogously, we let ph(i,x) be the conditional
probability of i being marked as dishonest/malicious by the protocol, conditioned that
she abided honestly by the protocol rules and the other operators play x. The latter
can occur when the protocol could produce false positives. Naturally, we can expect
that ph(i,x)<<ps(i,x). Moreover, ph(i,x)=0 if a protocol has no false positives.

The essence of the next theorem is that if we can estimate the probabilities ps(·)
and ph(·) in a given protocol, then we could tune the reward parameters r, g and
the deposit d, so that playing honestly is the most preferable choice for each player.
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Theorem 1. Fix a player i and let x ∈ {H,C}n−1 be the strategy profile of the
remaining players. If i is not located in the designated regions, then playing honestly
is better for i than deviating, when the geographic bonus is upper-bounded as follows

g≤ ps(i,x)−ph(i,x)

1−ps(i,x)
·(r+d)

Proof. Consider such a player i. When i plays honestly, and the remaining players
play according to x, then her expected payoff is equal to (1−ph(i,x))r+ph(i,x)(−d).
This is so, because i will get her deposit back if she is not marked as dishonest by
the protocol, which occurs with probability 1−ph(i,x). On the other hand, suppose
that such a player i cheats. Then, with probability ps(i,x), she will have a negative
utility of −d, since she will lose her deposit, whereas with the remaining probability
she gets a total gain of r+g. Therefore, her expected utility becomes:

(1−ps(i,x))(r+g)+ps(i,x)(−d)

In order for honest play to be more preferred, we need the expected payoff under the
honest profile to be at least as good as the above formula. Thus, the following needs
to hold: (1−ph(i,x))r+ph(i,x)(−d)≥ (1−ps(i,x))(r+g)+ps(i,x)(−d). Simplifying
this leads to the claimed condition in the theorem. ⊓⊔

This allows us to conclude when does honest play form a Nash equilibrium of the
underlying game. Let x∗=(H,H,···,H) be the honest profile, where all n players act
honestly. Following standard notation, and given a player i, let x∗

−i be the strategy
profile of the remaining n−1 players acting honestly.

Corollary 1. The honest profile x∗=(H,H,···,H) is a Nash equilibrium if for every
player i whose real location is in a non-designated region, it holds that

g≤
ps(i,x

∗
−i)

1−ps(i,x∗
−i)

·(r+d), (1)

where ps(i,x
∗
−i)) is the probability of i getting caught when all players are acting

honestly.

4.1 Collusion

Coming now to the aspects of collusion, it is conceivable that some operators, say
a set S, could try to form a coalition so that some members of S can attempt to
spoof their location and receive the extra geographic reward bonus g. We can think
of the set S as being decomposed in 2 subsets, S=S1∪S2, where S1 is the subset of
S belonging already to the designated regions and S2 is the subset of S who want to
spoof their location. We will often refer to S2 as the spoofers and to S1 as the helpers.

The reason that S1 may be willing to participate in such a collusion is because the
members of S2 may offer them some compensation from the extra amount that they
will make if they succeed in spoofing their location. Therefore, the members of S1

may take the risk to help (by reporting say false RTT times towards S2), even though
they will not try to spoof their own location. This gives rise to the following definition.
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Definition 1. Consider a coalition of operators S. We say that the honest profile
(H,H,...,H) is resilient to a collusion by S, if the total expected utility of S under the
honest profile is at least as big as the total expected utility under deviating.

For simplicity, we will stick to scenarios where only one set of nodes is trying to
collude together and deviate from the protocol in order to gain more profits. Hence,
if S is the set of the colluding players, we will consider that the remaining operators
are behaving honestly. Ideally, to evaluate the resistance of a protocol to such actions,
we would need to estimate the probability that a player gets caught cheating. i.e, we
could define p(i,S), as the probability of player i getting caught when the collusion
set is S, with i∈S, while all other players not in S are being honest. We will provide
here a simpler but coarser analysis, assuming that the relevant probabilities depend
on the cardinalities of the involved sets and not on the identities of its members.

In particular, let S be a set of colluding players, with |S|=t and suppose |S1|=th,
|S2|= ts, so that t= th+ts. We continue our analysis by focusing on two different
scenarios regarding the success of the collusion. The first one is more suitable for
protocols that try to detect deviations by a coalition of players as a whole. The second
one captures protocols that try to detect a deviation per individual.

All-or-nothing Detection. Consider the case where the protocol either catches all
the spoofers of the collusion or not. We let p(t,ts) be the probability that a set of ts
spoofers gets caught, when they form a coalition with t−ts helpers. We assume that
when the collusion is detected by the protocol, it penalizes all the spoofers (who then
lose their deposit) but not the helpers. Thus, we consider a lenient type of protocols
that do not hurt the helpers, given that they do not try to misreport their location.
The subsequent analysis can be adapted easily for the case where the helpers are also
punished.

We can now try to establish some sufficient conditions on the relevant parameters
that could avert collusion.

Theorem 2. The honest profile x∗=(H,H,...,H) is collusion-resistant to a collusion
of size t with ts spoofers, when

g≤ p(t,ts)

1−p(t,ts)
·(r+d) (2)

Proof. Under the honest profile, the total utility of S is
∑

i∈Sui(H,H,...,H). For each
member i∈S1, her utility under honest play equals (r+g) with probability 1. For
the members of S2, it equals r. Therefore, by summing up, we have∑

i∈S
ui(H,H,...,H)=(t−ts)(r+g)+tsr (3)

If the set S deviates, then with probability p(t,ts) the members of S2 lose the
deposit d, and do not get any reward. On the other hand, with probability 1−p(t,ts),
all members of S gain r+g. Hence the expected utility of S would be equal to

t(1−p(t,ts))(r+g)+p(t,ts)[(t−ts)(r+g)−tsd]
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In order for x∗ to be collusion resistant, we therefore need the last expression to
be upper bounded by the expected utility of S under honest play. After carrying out
the calculations and some arising simplifications, we obtain the desired inequality. ⊓⊔

Individual Detection. Suppose now that when a set S colludes, the protocol may
identify some of the members as spoofers whereas other members may get away with
it. In this context, we use the term p(t,ts) to denote the probability that each spoofer
gets caught and penalized, when she belongs to a coalition of t members with ts
spoofers, and when all other players are honest. This means that for each spoofer
we have a Bernoulli trial for having her caught. Also, as before, the helpers are not
penalized. We provide an analog of Theorem 2 below, where the conditions now get
more complex due to the counting of the successful Bernoulli trials.

Theorem 3. The honest profile x∗=(H,H,...,H) is collusion-resistant to a collusion
of size t with ts spoofers, when

ts∑
ℓ=0

(
ts
ℓ

)
·p(t,ts)ℓ(1−p(t,ts))

ts−ℓ[−dℓ+(ts−ℓ)(r+g)]≤rts (4)

5 Decentralized Localization Game

We now present a decentralized localization game derived from the model proposed in
the previous section. In particular, we use a blockchain smart-contract to play the role
of the Game Organizer (GO), concretize the exact data shared by the operators, the
localization algorithm that is used to detect misbehaving operators (which was treated
as a black box in the previous game analysis), and specify the various strategies
available to the operators.

Game parameters: Internet graph G, the rewards: r, g and the required deposit d.
Also, an upper bound t on the maximum number of colluding nodes in the network
is assumed. The localization algorithm has another tweakable parameter k to man-
age the false positives and false negatives. As a first step, all the game parameters
are published on the blockchain and a smart-contract with the above-mentioned
parameters embedded in it is launched. As before, the game is divided into phases:
– First phase: Operators send their IP address5, a deposit of d≥0 coins as well as a

commitment (hash function based) to their location (instead of outrightly sending in
their location) to the smart contract. Malicious operators may report a location on
the internet graph different from their true location, as well as a different IP address,
but we assume that ping requests to the claimed IP address is responded to by the
operator. Operators can also choose to totally abstain from the game, but they do
not affect our game in any way. Note that the commitment hides the location from
all other operators and also ensures that the participant cannot open (change) it to a
different location later. This way the operators can not adapt their strategy based on
other operators’ locations/actions. As mentioned in Section 4, our analysis is based
on normal-form games, i.e., every operator picks a strategy and then plays the game.

5 For honest operators, IP addresses may correlate with physical location; however, our approach does
not rely on IP-based localization.
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Algorithm 1 Localization
Input: Graph G :=(V =[1,n],E={i,j,e[i,j]}
s.t. i,j∈V, e[i,j]≥0∧e[i,j]=e[j,i]),
O⊆V s.t. |O|=m,
RTTs={(i,ipi,rtti[m−1])}i∈O, k
Output: Set: Malicious
Steps:
∀i∈O: count[i]=0; Malicious = {}
for (i∈O,j∈O\{i}) do

if (rtti[j]≠e[i,j]) or (rttj[i]≠e[i,j]) then
count[i]++

end if
end for
if ∃i∈O with count[i]≥k then

Malicious←−Malicious∪{i}
end if
Output Malicious

Algorithm 2 deltafn(i,O,t,k)

Input: G = (V, E), O ⊆ V s.t.
|O|=m, i∈O, t, k
Output: δ
Steps:
δ=0
for a random choice of set S in O\{i}
of size t−1 do

H=O\{S}
for i′∈V \O do

H
′
←−{j :j∈H, e[j,i′]<e[j,i]}

if |H
′
|<k then

δ=max(δ,d(i,i′))
end if

end for
end for
return δ

– Second phase: All participating nodes read the IP addresses from the smart
contract and then perform the m−1 RTT measurements, and publish them back
to the smart contract as well as send their location (open the commitment) in the
graph. As mentioned earlier, a cheating operator may report arbitrary RTTs to
the various IP addresses.

– Third phase: The smart contract validates that every participant has submitted
the required RTT measurements, and then collects the locations submitted by the
operators. The smart contract then runs the localization algorithm (Algorithm 1)
along with the received location claims (which should match the commitments) to
decide on the malicious nodes and the payments and rewards that are to be made.

• If one or more operators are output as malicious: Forfeit deposit of all malicious
nodes. Return deposits of all other non-malicious nodes along with reward r.

• If the output Malicious set is empty: Each operator gets back the deposit d and
a reward r. Further, operators in designated regions receive additional reward g.

Overview of Algorithm 1. The algorithm takes as input the graph G, the operator
set O of size m, a m−1 array per operator with the measured RTTs and k, which is
the number of RTT mismatches that are considered by the localization algorithm to
detect misbehaving nodes. k can take any value in [1,t+1] 6, with each value resulting
in different false positives and false negatives in misbehaviour detection. For instance,
a value of t+1 ensures zero false positives (high false negatives as well), as no honest
node can have more than t mismatched entries (here we assume that the colluding
nodes are not trying to frame any honest node, rather making modifications to RTTs
to help the colluding nodes avoid detection). A smaller value of k in contrast leads
to lower false negative rates and smaller maximum spoofing distance.

6 As in the previous section, if we assume that ts out of the t colluding nodes to be spoofing their
location, k can take a value in [1,ts+1]
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Fig. 1: Maximum spoofing distance (given in terms of diamter of G) for varying numbers
of spoofers within a coalition of size 3. Shaded areas indicate the 90% confidence interval.

On the Threshold k.We propose a way for GOs to choose an appropriate value of k.
To this end, the GO can use Algorithm 2 to compute δi,O,t,k which is the maximum
distance any node i∈O can spoof its location by, when the nodes (O\i) are reporting
RTTs to i, at most t−1 of them are in collusion with i, and k is the threshold used
in the localization algorithm. Further δG,O,t,k=maxi∈O deltafn(i,O,t,k). If the value
of δG,O,t,k is considered too high, then an option may be to decrease k. However, as
mentioned before, this also increases the false positive rate.

We further observe that the parameters k and t in Algorithm 1 and 2 constitute
a practical bridge between the idealized graph-based formulation in Section 3 and the
game-theoretic model in Section 4 that describes a realistic setting where collusion
and a limited number of RTT mismatches (k) are allowed. We present some empirical
results around k, t and the false positives in Section 6.

6 Simulations

We present some key insights related to the game postulated in Section 5 using simula-
tions on two data sets that contain RTT measurements between hosts in the Internet.

Data Sets. The first data set comprises 132 hosts forming an overlay network. Since
the network’s architecture and routing are known, the data set includes both RTTs
between nodes and edge weights, where the weights represent average delays for the
corresponding links. This graph structure enables evaluation of the graph-theoretic
aspects discussed in Section 3. The corresponding simulation results are in Appendix E.

The second data set contains 152 hosts with pairwise round-trip time (RTT)
measurements, including minimum, maximum, and average delays. It is provided
by WonderNetwork [27], a global provider of networking services specializing in
performance testing. Both data sets contain the geographic locations of the hosts at
city-level precision, which we show in Appendix D.

Maximum Spoofing Distance under Collusion. We examine the maximum spoof-
ing distance (δ) achievable under collusion, using both data sets and assuming a fixed
coalition size of three. Figure 1 reports values of δG,O,t,k for t=3 and k∈1,2,3. δG,O,t,k

is computed using the function deltafn(i,O,t,k) for all i∈O as defined in Algorithm 2.
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Fig. 2: p(t,ts) (dotted lines) and ph(t,ts) (solid lines) for varying numbers of players, coalition
size t, and number of spoofers ts, based on data set 2 (152 nodes). Shaded bands represent
the 90% confidence interval. Player locations are sampled uniformly within the convex hull.

As described before, spoofers falsely report their location and are allowed to manip-
ulate both incoming and outgoing RTT measurements to evade detection. Helpers,
by contrast, do not spoof their own location but submit RTTs that favor coalition
members. The results in Figure 1 clearly show that the maximum spoofing distance
increases with the number of spoofers in the coalition. Maintaining zero false positives
requires a higher detection threshold (as discussed in Section 5), which in turn reduces
the sensitivity of the system to spoofing attempts, particularly when multiple dishon-
est players are involved. Compared to the baseline case of a lone spoofer, a coordinated
coalition can significantly extend the range over which spoofing remains undetected.

Probability of Malicious Behavior Detection and False Positives. We present
insights from our incentivization game from Section 5. We measure the probability
that a dishonest player is correctly identified (p(t,ts)) when attempting to spoof their
location, and the probability that an honest player is incorrectly flagged as dishonest
(false positive), ph(t,ts). These metrics are evaluated in various scenarios, including
when dishonest players act alone or as part of a coalition. The trade-off between
p(t,ts) and ph(t,ts) is controlled by the threshold parameter k in the localization
algorithm (Section 5). The results shown here are for data set 2; the results for data
set 1 are similar and can be found in Appendix F.

Figure 2 reveals that increasing k consistently reduces ph(t,ts). In particular,
ph(t,ts) drops to zero once k exceeds the number of spoofers. The “helping” players
within the coalition contribute favorable RTTs but do not perform spoofing themselves
(see Section 4), and therefore do not influence ph(t,ts). However, p(t,ts) decreases with
increasing k. This is because Algorithm 1 requires a higher number of honest players
located near the spoofed position to register enough measurement inconsistencies and
reach the threshold k. The number of both spoofers and helpers affects p(t,ts); the
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Fig. 3: Detection probability (p(t,ts)) for k=t+1, i.e., no false positives. Player locations are
sampled uniformly inside convex hull. Target locations (during spoofing) are randomly chosen.

more dishonest players are present, the greater the likelihood that a spoofing attempt
goes undetected, as the coalition can obscure more RTT mismatches.

Figure 3a shows the average p(t,ts) when the localization algorithm is configured
for low false positives (low ph(t,ts)), enabling collusion resistance as described in
Section 4. We set the threshold k to be the number of spoofers plus one, which
ensures that spoofers are only flagged when a sufficient number of honest players
register inconsistencies. The results in Figure 3a confirm that the p(t,ts) increases
with the number of players because more players result in more measurement paths
and consequently a higher probability of detecting anomalies. Detection becomes
more difficult as the coalition size grows. Larger coalitions provide spoofers with more
support in manipulating RTT measurements, thereby reducing the odds of detection.
A greater number of spoofers further improves the coalitions’ chances of evading
detection as more spoofers introduce a larger number of RTT mismatches, potentially
implicating honest players and lowering the effectiveness of the detection mechanism.

Collusion Strategies. We investigate how the placement of colluding players in-
fluences the detection probability of location spoofing. Rather than assuming that
helpers are selected randomly and without (geographic) awareness, we consider more
strategic adversarial behaviors in which the spoofer chooses helpers located either
near their target location or near their actual location.

Figure 3 presents the average detection probability for these three strategies,
assuming a coalition of five players, with one acting as the spoofer and four as helpers.
The experiments are repeated under two different player location sampling regimes:
random selection and uniform distribution within the convex hull. For instance, the
solid purple line with square markers in Figure 3 shows the detection probability
when player locations are sampled randomly, and the helpers are positioned near the
spoofer’s target location.

A uniform distribution of players improves the detection probability, but more
importantly, there is a decrease in detection probability when helpers are located
close to the target. In this configuration, the helpers can report shorter RTTs that are
consistent with the spoofed location, as their distance to the target is often shorter
than to the spoofer’s actual location. This increases the chances of a successful spoofing
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attempt. Conversely, when the helpers are placed near the spoofer’s true location, the
detection probability is largely unaffected. This strategy provides little to no advantage
to the attacker, and p(t,ts) remains comparable to the baseline with random sampling.

Incorporating Jitter and Measurement Noise. Algorithm 1 relies on inequality
conditions to detect mismatches in RTTs. In practice, these inequalities may be
relaxed to account for variability introduced by routing dynamics and network noise.
Our empirical analysis shows that accounting for jitter only has a limited effect on
detection rates. Assuming that 10% of the delay is governed by jitter, detection rates
decrease by less than 5%. The respective figures can be found in Appendix G.

7 Discussion and Conclusion

We adopted a formal approach to analyze the guarantees that distributed geolocation
verification can offer in arbitrary network topologies. We introduced a generic two-tier
reward game model designed to incentivize geographic diversity and presented a
corresponding localization algorithm tailored to meet the requirements for both Nash
equilibrium and collusion resistance. Finally, we evaluated the detection probability
and false positive probabilities, the two central metrics underpinning the feasibility
of equilibrium and collusion resistance, using two real-world data sets.

Possible Extensions. Our study is a starting point for incentivizing geographic diver-
sity. Currently, players face a binary decision (honest/dishonest), but a multi-tiered sys-
tem and a richer strategy space would allow for more nuanced decisions, including mul-
tiple spoofing targets. Furthermore, future work should consider colluding behaviors
where dishonest players undermine honest participants without gaining a direct reward.

Overall, this work advances the theory of distributed location verification and
bridges the gap towards practical applications in real-world networks. By facilitating
more resilient location verification, our mechanism can help mitigate spoofing attacks
and incentivize geographic diversity in distributed systems.
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the National Recovery and Resilience Plan Greece 2.0 funded by the European Union under
the NextGenerationEU Program.

References

1. Abdou, A., Matrawy, A., van Oorschot, P.C.: Accurate manipulation of delay-based
internet geolocation. In: Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security. p. 887–898. ASIA CCS ’17, Association for Computing
Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3052973.3052993,
https://doi.org/10.1145/3052973.3052993

2. Arif, M.J., Karunasekera, S., Kulkarni, S., Gunatilaka, A., Ristic, B.: Internet host
geolocation using maximum likelihood estimation technique. In: 2010 24th IEEE
International Conference on Advanced Information Networking and Applications. pp.
422–429 (2010). https://doi.org/10.1109/AINA.2010.139

https://doi.org/10.1145/3052973.3052993
https://doi.org/10.1145/3052973.3052993
https://doi.org/10.1145/3052973.3052993
https://doi.org/10.1109/AINA.2010.139
https://doi.org/10.1109/AINA.2010.139


Incentivizing Geographic Diversity for Decentralized Systems 17

3. ATOMScan, Inc.: Validators – ATOMScan. https://atomscan.com/validators
(2025), AtomScan: Blockchain explorer for Cosmos validator information

4. Basilico, N., Gatti, N., Monga, M., Sicari, S.: Security games for node localization
through verifiable multilateration. IEEE Transactions on Dependable and Secure
Computing 11(1), 72–85 (2014). https://doi.org/10.1109/TDSC.2013.30

5. Brešar, B., Kovše, M., Tepeh, A.: Geodetic Sets in Graphs, pp. 197–218.
Birkhäuser Boston, Boston (2011). https://doi.org/10.1007/978-0-8176-4789-6_8,
https://doi.org/10.1007/978-0-8176-4789-6_8

6. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptography.
In: Advances in Cryptology – CRYPTO 2009. Lecture Notes in Computer Science,
vol. 5677, pp. 391–407. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03356-8_23, https://doi.org/10.1007/978-3-642-03356-8_23

7. Chartrand, G., Harary, F., Zhang, P.: Geodetic sets in graphs. Discussiones
Mathematicae Graph Theory 20(1), 129–138 (2000)

8. CoinShares: Bitcoin nodes around the world: a look at their distribution
& impact (April 2025), https://coinshares.com/ch/insights/knowledge/
bitcoin-nodes-around-the-world-a-look-at-their-distribution-impact/,
accessed: 2025-05-07

9. Cointelegraph: Bitcoin nodes data: Frankfurt houses the largest
city-wide network (2024), https://cointelegraph.com/news/
bitcoin-nodes-data-frankfurt-houses-the-largest-city-wide-network, ac-
cessed: 2025-05-07

10. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: a decentralized network coor-
dinate system. SIGCOMM Comput. Commun. Rev. 34(4), 15–26 (Aug 2004). https:
//doi.org/10.1145/1030194.1015471, https://doi.org/10.1145/1030194.1015471

11. Dong, Z., Perera, R.D.W., Chandramouli, R., Subbalakshmi, K.P.: Network
measurement based modeling and optimization for ip geolocation. Comput.
Netw. 56(1), 85–98 (Jan 2012). https://doi.org/10.1016/j.comnet.2011.08.011,
https://doi.org/10.1016/j.comnet.2011.08.011

12. Edgington, B.: Aggregator selection. https://eth2book.info/latest/part2/
building_blocks/aggregator/ (Sep 2025), in *Upgrading Ethereum: The Eth2 Book*,
Part 2: Technical Overview — The Building Blocks

13. Eriksson, B., Barford, P., Sommers, J., Nowak, R.: A learning-based approach for ip
geolocation. In: Krishnamurthy, A., Plattner, B. (eds.) Passive and Active Measurement.
pp. 171–180. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

14. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of
internet hosts. IEEE/ACM Transactions on Networking 14(6), 1219–1232 (2006).
https://doi.org/10.1109/TNET.2006.886332

15. Hong, A., Li, Y., Zhang, H., Wang, M., An, C., Wang, J.: A cheap and ac-
curate delay-based ip geolocation method using machine learning and looking
glass. In: 2023 IFIP Networking Conference (IFIP Networking). pp. 1–9 (2023).
https://doi.org/10.23919/IFIPNetworking57963.2023.10186436

16. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T., Chawathe,
Y.: Towards ip geolocation using delay and topology measurements. In: Proceedings
of the 6th ACM SIGCOMM Conference on Internet Measurement. p. 71–84. IMC
’06, Association for Computing Machinery, New York, NY, USA (2006). https:
//doi.org/10.1145/1177080.1177090, https://doi.org/10.1145/1177080.1177090

17. Kohls, K., Diaz, C.: VerLoc: Verifiable localization in decentralized systems. In:
31st USENIX Security Symposium (USENIX Security 22). pp. 2637–2654. USENIX
Association, Boston, MA (Aug 2022), https://www.usenix.org/conference/
usenixsecurity22/presentation/kohls

https://atomscan.com/validators
https://doi.org/10.1109/TDSC.2013.30
https://doi.org/10.1109/TDSC.2013.30
https://doi.org/10.1007/978-0-8176-4789-6_8
https://doi.org/10.1007/978-0-8176-4789-6_8
https://doi.org/10.1007/978-0-8176-4789-6_8
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-03356-8_23
https://coinshares.com/ch/insights/knowledge/bitcoin-nodes-around-the-world-a-look-at-their-distribution-impact/
https://coinshares.com/ch/insights/knowledge/bitcoin-nodes-around-the-world-a-look-at-their-distribution-impact/
https://cointelegraph.com/news/bitcoin-nodes-data-frankfurt-houses-the-largest-city-wide-network
https://cointelegraph.com/news/bitcoin-nodes-data-frankfurt-houses-the-largest-city-wide-network
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1145/1030194.1015471
https://doi.org/10.1016/j.comnet.2011.08.011
https://doi.org/10.1016/j.comnet.2011.08.011
https://doi.org/10.1016/j.comnet.2011.08.011
https://eth2book.info/latest/part2/building_blocks/aggregator/
https://eth2book.info/latest/part2/building_blocks/aggregator/
https://doi.org/10.1109/TNET.2006.886332
https://doi.org/10.1109/TNET.2006.886332
https://doi.org/10.23919/IFIPNetworking57963.2023.10186436
https://doi.org/10.23919/IFIPNetworking57963.2023.10186436
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1145/1177080.1177090
https://www.usenix.org/conference/usenixsecurity22/presentation/kohls
https://www.usenix.org/conference/usenixsecurity22/presentation/kohls


18 Roeschlin et al.

18. Kohls, K., Jansen, K., Rupprecht, D., Holz, T., Pöpper, C.: On the challenges of
geographical avoidance for tor. In: NDSS (2019)

19. Krajsa, O., Fojtova, L.: Rtt measurement and its dependence on the real geographical
distance. In: 2011 34th International Conference on Telecommunications and Signal
Processing (TSP). pp. 231–234 (2011). https://doi.org/10.1109/TSP.2011.6043737

20. Landa, R., Clegg, R.G., Araujo, J.T., Mykoniati, E., Griffin, D., Rio, M.: Measuring
the relationships between internet geography and rtt. In: 2013 22nd International
Conference on Computer Communication and Networks (ICCCN). pp. 1–7 (2013).
https://doi.org/10.1109/ICCCN.2013.6614151

21. Maram, D., Kelkar, M., Bentov, I., Juels, A.: Goat: File geolocation via anchor
timestamping. In: Clark, J., Shi, E. (eds.) Financial Cryptography and Data Security.
pp. 35–72. Springer Nature Switzerland, Cham (2025)

22. Milionis, J., Ernstberger, J., Bonneau, J., Kominers, S.D., Roughgarden, T.: Incentive-
compatible recovery from manipulated signals, with applications to decentralized
physical infrastructure (2025), https://arxiv.org/abs/2503.07558

23. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf (2008)

24. Padamanabban, V.N., Subramanian, L.: Determining the geographic location of internet
hosts. In: Proceedings of the 2001 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems. p. 324–325. SIGMETRICS
’01, Association for Computing Machinery, New York, NY, USA (2001). https:
//doi.org/10.1145/378420.378814, https://doi.org/10.1145/378420.378814

25. Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping
techniques for internet hosts. In: Proceedings of SIGCOMM 2001. p. 173–185. SIG-
COMM ’01, Association for Computing Machinery, New York, NY, USA (2001). https:
//doi.org/10.1145/383059.383073, https://doi.org/10.1145/383059.383073

26. Sheng, P., Sevani, V., Rana, R., Tyagi, H., Viswanath, P.: Bft-poloc: A byzantine
fortified trigonometric proof of location protocol using internet delays (2024),
https://arxiv.org/abs/2403.13230

27. WonderNetwork: A day in the life of the internet. https://wonderproxy.com/blog/
a-day-in-the-life-of-the-internet/ (2024), accessed: 2024-10-14

28. Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A comprehensive framework for the
geolocalization of internet hosts. In: NSDI. vol. 7, pp. 23–23 (2007)

29. Zilberman, A., Offer, A., Pincu, B., Glickshtein, Y., Kant, R., Brodt, O.,
Otung, A., Puzis, R., Shabtai, A., Elovici, Y.: A survey on geolocation
on the internet. IEEE Communications Surveys & Tutorials pp. 1–1 (2024).
https://doi.org/10.1109/COMST.2024.3518398

A Geodetic Sets and Geostability

We recall the notion of Geodetic sets from Graph theory and show that any graph
G is Geostable with respect to its Geodetic set.

Notation. The diameter diam(G) of a connected graph is defined by diam(G) =
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Definition. If G is a connected graph, then a set A of vertices is a Geodetic set if
I[A]=V (G). The minimum cardinality of a Geodetic set is the Geodetic number of
G, and is denoted by g(G).

Thus all vertices of a graph G lie on some shortest path between some vertices
of a Geodetic set A, or:

V (G):=
⋃

k,k′∈A

P(k,k′)

We show that if A is a Geodetic set of G, then G is a (A,0)-Geostable graph. This
means that if nodes in A are reporting RTTs to any node i∈V \A, then i cannot spoof
its location to any other node j∈V \A (note δ=0). We now prove the above claim:

Theorem 4. If A is a Geodetic set of graph G, then G is (A,0)−Geostable.

Proof. If A is a Geodetic set of graph G, then all vertices of G and in particular
all vertices in V \A lie on some shortest path between two vertices of A. Note, a
vertex in V \A may lie on multiple shortest paths between the vertices of A, and if
after choosing some selected path for each vertex, the set A continues to remain a
Geodetic set, then it is called a strong Geodetic set. We will show that A being a
strong Geodetic set is a sufficient condition for G to be (A,0)-Geostable.

First, consider the case, when any two vertices i,j∈V \A lie on the same shortest
path P(k,k′) connecting k,k′ ∈ A. Since i ≠ j, d(i,j) > 0 and this means either
d(i,k)<d(j,k) or d(i,k′)<d(j,k′), depending on whether i lies before j on the path
from k to k′ or j lies before i on the path from k to k′ respectively. Therefore, neither
i can spoof j’s location nor j can spoof i’s location. In general, for any two such
nodes i,j∈V \A, ¬

(
i⪯δ

A j
)

and ¬
(
j⪯δ

A i
)
.

Now we will show that two nodes in V \A that are not on the same shortest paths,
are also unable to spoof each other’s location, when the set A is a strong Geodetic set.

We assume that i lies on a unique shortest path between nodes k1,k2∈A and j
lies on the unique shortest path between nodes k3,k4∈A, where at least k1≠k3 or
k2≠k4. Without loss of generality, we will assume k1≠k3 in the analysis presented
below. A similar argument holds in the case when k2≠k4

Now since i∈P(k1,k2) and i /∈P(k3,k4), either d(i,k3)>d(j,k3) or d(i,k4)>d(j,k4).
This is because if both d(i,k3) ≤ d(j,k3) and d(i,k4) ≤ d(j,k4), then d(k3,k4) =
d(k3,i)+d(i,k4)≤d(k3,j)+d(j,k4), implying there is a shorter path between k3 and
k4 through i rather than j which is a contradiction (since j lies on the shortest path
between k3 and k4). Note it is also a contradiction even when k2=k4 (since j lies
on the shortest path between k3 and k2 and i does not). Thus, ¬

(
j⪯δ

A i
)
.

Similarly, since j ∈ P(k3, k4) and j /∈ P(k1, k2), either d(j, k1) > d(i, k1) or
d(j,k2) > d(i,k2). This is because if both d(j,k1) ≤ d(i,k1) and d(j,k2) ≤ d(i,k2),
then d(k1,k2)=d(k1,j)+d(j,k2)≤d(k1,i)+d(i,k2), implying there is a shorter path
between k1 and k2 through j rather than i which is a contradiction. Note it is also
a contradiction even when k2=k4. Thus, ¬

(
i⪯δ

A j
)
.

Thus, given any two vertices i,j∈V \A, irrespective of whether they are on the
same shortest path or different shortest paths, they cannot spoof each other’s location.
This implies graph G is (A,0)-Geostable, i.e.
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∀i,j∈V \A
i̸=j

∃k∈A d(i,k)>d(j,k)

However, V (G) :=
⋃

k,k′∈AP(k,k′) is not a necessary condition for a Geostable
graph. E(G) can always contain edge weights / latencies such that a further-off
relation is not possible (see next Section for a proof). As a consequence, Theorem 4
is sufficient as it is edge weight agnostic. In Appendix E, we verify Theorem 4 with
simulations using real-world data sets and evaluate the spoofing distance as the
intersection of A and the geodetic set decreases.

A.1 Theorem 4 is only sufficient for geostability

V (G):=
⋃

k,k′∈AP(k,k′) is not a necessary condition for a Geostable graph. E(G) can
always contain edge weights / latencies such that a further-off relation is not possible.

Proof. See the example below where the shaded vertices depict set A. Note that
vertex 7 is not part of any shortest path, but yet vertex 7 is not further off from any
other vertex. Similarly, there is no other vertex that is further off from 7.

1 2 3 4

5 6 7

2 2 2

2 1

2

B Missing Proofs from Section 4

B.1 Proof of Corollary 1

Consider the honest profile x∗=(H,H,···,H). Note that for any player i, since every-
body else is playing honestly under this strategy profile, we have that7 ph(i,x∗

−i)=0.
It is trivial now to note that for any player who belongs to a designated region, there
is no incentive to deviate. Indeed, such a player is already getting the additional
bonus g with probability 1, as there are no false positives under x∗. Therefore, by
deviating from honest play, she only increases her probability of losing her deposit,
and at the same time, she is not gaining more rewards when not caught. Hence, it
remains to look at the incentives of players who do not belong to a designated region.
Fix such a player i, and apply now Theorem 1. By using the fact that ph(i,x∗

−i)=0,
we obtain the desired inequality. ⊓⊔

7 If all players are honest, then the only way a protocol could mark someone as dishonest could be due
to some network error or miscalculations, but we ignore such aspects in this work.
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B.2 Proof of Theorem 3

Under the honest profile, the total utility of S is
∑

i∈Sui(H,H,...,H). For each
member i∈S1, her utility under honest play equals (r+g) with probability 1. For
the members of S2, it equals r. Therefore, by summing up, we have∑

i∈S
ui(H,H,...,H)=(t−ts)(r+g)+tsr (5)

If the set S deviates, then we should estimate the expected utility of the entire coali-
tion. For the non-spoofers, which are the members of S1, they will continue to receive
r+g. Regarding the set S2 of the spoofers, there is a Bernoulli trial for each i∈S2, and
those who get caught are penalized and lose their deposit d, while the remaining ones
receive r+g. Therefore, in total the expected utility of the colluding set will be equal to

(r+g)·(t−ts)+

ts∑
ℓ=0

(
ts
ℓ

)
·p(t,ts)ℓ(1−p(t,ts))

ts−ℓ[−dℓ+(ts−ℓ)(r+g)]

In order for the honest profile to be collusion resistant, we therefore need the last
expression to be upper bounded by the expected utility of S under honest play. After
carrying out the calculations and some arising simplifications, we obtain the desired
inequality. ⊓⊔

C Graph-based versus Coordinate-based

A graph-theoretic model enables us to study the localization problem in a generic
sense (for instance, for any network) without restricting us to any specific method
of obtaining the RTTs (and thus weights), each of which method has its own set of
limitations, as we explain below:

– An analysis using the assumption of proportionality between delays and the
‘Great Circle’ distance would not generalize to any network. For example, when
traveling through the sea, the messages are restricted to submarine cables.

– A speed curve/fit cannot capture the exact network structure. That means a
speed curve/fit has to be derived for each specific network, as one single curve
cannot be accurate to the same degree in all networks. CBG [14] and [26] even
postulate that every node in the network requires a separate delay-distance
mapping to achieve a sufficient level of approximation.

– Coordinate-based methods need to solve a trilateration/multilateration problem
which can only be approximate. Verifying a location claim means finding the
optimum of an over (or under) determined system of constraints, such as in [17].

– In contrast, our theoretical approach requires knowledge of the network structure
and network weights a priori. Obtaining reliable ground truth means determin-
ing parts of the Internet topology, which can be challenging, especially if high
granularity is required.

– In a graph-based approach, participants in the localization protocol need to
commit to the finite set of nodes present in the graph, leading to a degree of
unavoidable imprecision.
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D Overview of Data Sets

Fig. 4: Overview of the two data sets the simulations are based on. Nodes in data set 1
are depicted as red dots, data set 2 is shown as blue dots.

A graphical overview of the two data sets is shown in Figure 4. Nodes in data
set 1 are depicted as red dots, those in data set 2 are shown as blue dots. Data set
1 contains routing information captured as weighted edges between nodes in the
graph. Data set 2 includes only an adjacency matrix. The diameter of data set 1 is
257.09ms (Beijing–Seattle, 8684 km). The diameter of data set 2 is 399.09ms (Cape
Town–Christchurch, 11007 km).

E Simulations on Geostability and Geodetic Sets

Geostability and Geodetic sets. For data set 1, we study the maximum spoofing
distance as a function of the participant set. As shown in Theorem 4, if the localization
participants A form a Geodetic set of the graph G, no participant can spoof its
location, i.e., the maximum spoofing distance δG,A,t,k=0 when t=1 (no collusion)
and k=1 (a single mismatched RTT suffices to detect misbehaviour).

We computed the Geodetic set (size=54) for data set 1, and then ran simulations
with A sharing its participants from the Geodetic set as illustrated in Figure 5. When
the set of player locations in A coincides exactly with the Geodetic set (i.e. overlap
fraction = 1.0), the spoofing distance is indeed zero. We also show how the maximum
spoofing distance (as a fraction of the diameter of G) changes when A is only an
approximate Geodetic set. To do so, we retain a subset of the Geodetic set and fill the
remaining positions in A with randomly selected nodes. Our experiments reveal that
once the fraction of random locations exceeds 0.5, the maximum spoofing distance
increases substantially. Moreover, the effectiveness of geodetic locations diminishes in
smaller subsets—when A is a small subset of the Geodetic set, the spoofing distance
becomes comparable to that of a fully random selection.
Player Location Distribution. Since players’ locations may not form a complete
Geodetic set and incomplete Geodetic sets do not maintain low spoofing distances, we
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Fig. 5: Geostability for varying number of players at Geodetic set locations, i.e., the
fraction defines the number of player locations drawn from the Geodetic set where the
remaining locations are i.i.d. The maximum spoofing distance on the y-axis shows δG,A,t,k

for t=1,k=1 and is measured in terms of the diameter of G. A value of 1.0 means that
a player can spoof its location accross the entire network.
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Fig. 6: Maximum spoofing distance (δG,A,t=1,k=1) depending on the number of players.
Player locations are selected using three different sampling methods.

evaluate how the maximum spoofing distance varies under different player location
distributions.

Figure 6 again shows δG,A,1,1 (still in no collusion case) as we vary choose different
sampling techniques for A (independent of the Geodetic set). We perform 1,000
simulation runs and report the resulting spoofing distances for varying numbers of
players across both data sets. We consider three different sampling strategies for
selecting player locations:

1. Random — player nodes are sampled without regard to geographic position
(orange bars in Figure 6).

2. Uniform sampling along the convex hull formed by all nodes (blue bars). This
is motivated by the work in [6], which establishes the conditions for secure posi-
tioning, and [22], which establishes that source identifiability in Euclidean space
is guaranteed if the source lies within the convex hull formed by the observers.

3. Uniform sampling inside the convex hull area (green bars). This method draws
inspiration from BFT-PoLoc [26] and [21], both of which show improved geoloca-
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tion accuracy when challengers are uniformly distributed, increasing the chance
that the prover is geographically close to one or more challengers.

Methods 2 and 3 incorporate geographic constraints by limiting the sampling
support to either the convex hull’s perimeter or its enclosed area. Because the nodes
in our data sets are not uniformly distributed and do not naturally align with the
convex hull boundaries (see Figure 4), we implement these sampling methods as
follows: For method 2, we first compute the convex hull of all nodes and then sample
n intermediate coordinates (latitude and longitude) along the hull’s perimeter. For
each coordinate, we select the geographically closest node, ensuring that no duplicates
occur. Method 3 follows the same approach, except that coordinates are sampled
uniformly within the convex hull area.

As expected, the spoofing distance generally decreases with more players, since a
larger number of players yields more pairwise shortest paths. Additionally, placing play-
ers near the “outer edge” of the network (i.e., along the convex hull) increases the likeli-
hood of those paths covering a broad portion of the network. Our simulations confirm
this: sampling along the convex hull (method 2) results in shorter spoofing distances
than random placement. Sampling within the convex hull area (method 3) tends to
produce even shorter spoofing distances in most scenarios (see green bars in Figure 6).

These empirical results show that the difference in spoofing distance between
a “good” and a “bad” distribution of player locations can be significant. Assuming
that players can strategically position themselves at certain locations prior to partic-
ipating in the game, a key practical challenge that remains is the efficient discovery
or approximation of a suitable set A in a global Internet graph, without incurring
excessive measurement overhead or requiring centralized coordination.

F Detection Rates, False Positives and Collusion Strategies
Simulated Using Data Set 1

In Section 6, we measured the probability that a dishonest player is correctly identified
(p(t,ts)) when attempting to spoof their location, and the probability that an honest
player is incorrectly flagged as dishonest (false positive), ph(t,ts).

For completeness, we provide the simulation results for data set 1 in Figure 7,
which show the average p(t,ts) when the localization algorithm is configured for low
false positives (low ph(t,ts)). We also set the threshold k to be the number of spoofers
plus one, which ensures that spoofers are only flagged when a sufficient number of
honest players register inconsistencies.

The results are very similar to those of data set 2 and thus we observe the same
trends, i.e., p(t,ts) increases with the number of players because more players result
in more measurement paths, and detection becomes more difficult as the coalition
size grows.
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(a) Varying number of spoofers and coalition sizes
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(b) One spoofer in a coalition of size 5 for different
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Fig. 7: Detection probability (p(t,ts)) for k=t+1, i.e., no false positives. Player locations
are sampled uniformly inside convex hull. Target locations used during spoofing attempts
are randomly chosen.
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Fig. 8: Detection rate p(t,ts) (dotted lines) and false positive rate ph(t,ts) (solid lines) for
varying levels of expected noise. The number of spoofers is 5, the total number of players is 30.

G Network Jitter and Measurement Noise

The localization algorithm (Algorithm 1) relies on inequality conditions to detect
mismatches in RTTs. In practice, those inequalities may have to be relaxed to account
for variability introduced by routing dynamics and network noise.

We experimentally relax the inequalities in Algorithm 1 by considering noise on
the order of ρ∈ [0%, 10%, 20%] in the measured round trip times, and therefore we
add ρ to the ground truth edge weights e. The inequalities then become

rtti[j]≤e[i,j]·(1+ρ) or rttj[i]≤e[i,j]·(1+ρ)

In Figure 8, we set the number of players to 30 and the number of spoofers to
5 as an example scenario and show the detection rate and false positives for different
noise levels. We observe that accounting for jitter and noise only marginally decreases
detection rates and false positives. Overall, a lower false positive rate is generally
beneficial, and the effect on detection rate is limited. When adding a margin of 10%,
detection rate is lowered by less than 5% (assuming k=6, i.e., no false positives).
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We note that, in a real system, the effect of noise can be reduced by measuring
RTTs repeatedly with multiple ping messages, see, e.g., Verloc [17] where each node
sends 200 ICMP requests to any other node and then takes the minimum over the
measured RTTs. We did not perform any aggregation of RTTs in our experiments.
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