A Trilemma in AMM Mechanism Design

:1[0000—0001—5281—8742 ; :2[0000—0002—5605—1048
Yuhao Li'l I, Elaine Shi?l I
2[0000—0003—0247—6152] %

and Mengqgian
Zhang

! Columbia University, New York, USA yuhaoli@cs.columbia.edu
2 Carnegie Mellon University, Pittsburgh, USA
{elaineshi,menggianzhang}@cmu.edu

Abstract. Blockchains have popularized the Automated Market Mak-
ers (AMMSs), where users trade crypto-assets directly with a smart con-
tract, governed by a pricing function embedded in the contract’s code.
Today, users of AMMSs are often forced to accept unfavorable prices due
to widespread front-running and back-running attacks, commonly known
as Miner Extractable Value (MEV). Several earlier works show impossi-
bility results suggesting that completely removing MEV at the consen-
sus layer is impossible, partly because the consensus layer is agnostic
of application-level semantics. For this reason, more recent works have
advocated mechanism design approaches at the application (i.e., smart
contract) level.

We study a natural two-asset AMM mechanism design problem recently
initiated and explored in prior work by Chan, Wu, and Shi, in which
they proposed a mechanism that satisfies a surprisingly strong notion of
incentive compatibility (IC), under the consensus assumption that the
underlying blockchain provides sequencing fairness.

In this paper, we investigate the (in)feasibility of simultaneously achiev-
ing IC and other desirable properties such as weak local efficiency (wLE)
and uniform pricing (UP). At a high level, wLE requires that the mech-
anism should not leave any unfulfilled demand from users whose asking
prices are not overly restrictive, and whose orders could have been ex-
ecuted directly against the pool. UP requires that all orders that get
(partially) executed must trade at the same exchange rate.

We unveil the underlying mathematical structure of AMM mechanism
design, and our main results can be summarized as a trilemma-style
theorem: among the desirable properties IC, wLE, and UP, any two out
of three are possible, but no mechanism can satisfy all three.

Keywords: Decentralized Mechanism Design - MEV - Incentive Com-
patibility - Uniform Pricing - Economic Efficiency.

* Author ordering is randomized. See here.

https://www.aeaweb.org/journals/policies/random-author-order/search?RandomAuthorsSearch%5Bsearch%5D=Pnvt2DM0WZE-

2 Li, Shi, and Zhang

1 Introduction

Blockchains and cryptocurrencies have enabled decentralized finance (DeFi),
with Automated Market Makers (AMMS) [5] being the most popular DeFi ap-
plication today. As of March 2021, the total crypto assets held by the top six
AMMs (including Uniswap and Balancer) was valued at $15 billion [26].

An Automated Market Maker (AMM) is a smart contract backed by a de-
centralized blockchain. In a standard two-asset AMM mechanism, the contract
maintains a liquidity pool (henceforth called the pool for short) containing two
crypto-assets denoted X and Y respectively. Users can trade with the pool based
on the pricing function defined by the smart contract. At any point in time, the
pricing function determines an exchange rate for the two assets based on supply
and demand. For example, a widely adopted rule is the constant-product poten-
tial function defined as follows. Let Pool(X,Y) denote the pool’s state meaning
that the pool holds X > 0 and Y > 0 units of each asset, respectively®. A con-
stant product potential requires that X - Y = C for some constant C > 0. This
means that if a user buys z amount of X from the pool, it needs to pay —y
amount of Y such that (X —z)(Y — y) = C. Observe that under such a pricing
curve, the price of a crypto-asset will rise as more units are purchased from the
pool.

The rapid adoption of DeFi applications such as AMMs has led to widespread
incentive attacks often referred to as Miner Extractable Value (MEV). Specifi-
cally, since users submit their orders in the clear, arbitrageurs can easily launch
front-running and back-running attacks to make risk-free profit while forcing the
ordinary user to suffer from the worst-possible price [6, 14, 18,20, 21, 29]. Such
front-running and back-running attacks are exacerbated if the arbitrageur col-
ludes with a block producer (also called the miner?) who has unilateral control
over the next block’s contents as well as the sequencing of transactions within
the block. MEV-style incentive attacks are harmful in multiple dimensions. Not
only do they exploit the victim users, but also undermine the stability of the
underlying consensus ecosystem. Specifically, major block producers today have
private contracts with arbitrageurs and ordinary users alike, offering favorable
positions in the block to them at a price. This has in turn caused the blockchain’s
ecosystem to evolve towards a high degree of centralization — a recent measure-
ment study showed that more than 85% of the blocks today are built by the top
two block producers [27].

These negative externalities of MEV have been widely recognized, and the
blockchain community has made it their top priority to mitigate MEV. Unfortu-
nately, several recent works [4,12] have shown impossibility results that can be
interpreted to mean that “complete removal of MEV at the consensus layer (sub-
ject to today’s architecture) is impossible”. Partly this is because the consensus

3 Whenever the context is clear, we overload the notation X and Y to mean the
quantity of the two crypto-assets held by the pool.

4 In this paper, we use the terms “miner” and “block producer” interchangably. Our
results do not care whether the underlying consensus protocol is proof-of-work or
proof-of-stake.

A Trilemma in AMM Mechanism Design 3

layer is agnostic of the application semantics of the smart contracts, and yet the
utility of any transaction can be an arbitrary function of the blockchain’s state
(which is why MEV exists in the first place). As a result, more recent works
have advocated a combined “consensus + application” level approach towards
mitigating MEV. The idea is for the consensus layer not to completely eliminate
MEYV, but to provide certain desirable properties that lend themselves to MEV
mitigation. Then, the application layer (i.e., smart contract layer) can take ad-
vantage of such properties in mechanism design to achieve provable notions of
MEV resilience.

In particular, the recent work of Chan, Wu, and Shi [9] exemplifies this de-
sign principle, where they gave a formal treatment of AMM mechanism design
and defined a notion of MEV resilience called incentive compatible. Roughly
speaking, an AMM mechanism is said to be incentive compatible (IC), if every
user (or miner) maximizes its profit by truthfully reporting its intrinsic valua-
tion and demand, and no strategic move or manipulation will lead to positive
gains in utility. Because an arbitrageur (possibly colluding with the miner) can
be viewed as a special user with zero intrinsic demand, the IC notion of [9]
implies arbitrage resilience, that is, no one can make risk-free profit. Chan et
al. then showed that if the consensus layer offers weak sequencing fairness, one
can indeed design an AMM mechanism that satisfies IC. Specifically, the weak
fair-sequencing model is meant to capture a new generation of consensus proto-
cols with a decentralized sequencer [2,3,15-17], who sequences the transactions
based on their (approximate) time of arrival. We stress that this assumption
itself does not automatically eliminate MEV or prevent front-running, since a
strategic player can still insert orders dependent on others’ orders, and even race
and preempt the victims’ orders if it has a faster underlying network — this is
also why the feasibility results in [9] are interesting and non-trivial.

In this paper, we revisit the AMM mechanism design problem with the goal
of understanding the composability of incentive compatibility (IC) with other
desirable properties. More specifically, we ask the following questions:

— Is IC at odds with the efficiency of the mechanism? The mechanism of [9]
fails to offer a natural notion of efficiency for orders that demand a more
stringent price than the initial market price of the AMM pool denoted by rg.
For example, consider a user who wishes to buy asset X at a maximum price
r < rg. In Chan et al.’s mechanism, this user’s order will be ignored even if
after executing the batch, the pool’s ending price is actually lower than r.
Therefore, a natural question is whether we can have an IC mechanism with
better efficiency.

— Can we get IC by offering uniform pricing (UP) to the entire batch of or-
ders? Uniform pricing (UP) has been adopted in many academic publica-
tions [7,8,22,23,28] as well as real-world AMM mechanisms [1]. UP is often
regarded as a desirable property: not only does it provide fair pricing to
all users within the same batch, but it also mitigates MEV by eliminating
internal arbitrage and sandwich attacks. However, looking more broadly —
and especially in our context, where IC is intended to provide a very strong

4 Li, Shi, and Zhang

incentive guarantee — internal arbitrage elimination can be interpreted as a
relatively weak notion: it only prevents those strategic players with zero in-
trinsic demand from making risk-free profit. This, in particular, still permits
a user or miner with non-trivial valuation and demand to profit from strate-
gic deviations (see concrete manipulations by strategic users in Section 4.3
and by miners in [28]), which is precisely one of the misbehaviors that IC
intends to preclude. Therefore, a natural question is whether UP also lends
itself to achieving incentive compatibility.

1.1 Owur Results and Contributions

To answer the above questions, we further explore the design space to under-
stand the tension among the various desirable properties. We prove several new
feasibility and infeasibility results that jointly characterize the price of IC in
AMM mechanism design.

IC precludes strong notions of efficiency. First, we show that incentive com-
patibility (IC) conflicts with strong notions of efficiency including the standard
notion of Pareto optimality (PO) and a more relaxed notion called local effi-
ciency (LE). Specifically, PO means that there should not exist an alternative
legal outcome that makes someone strictly happier while leaving everyone else
at least as happy as the mechanism’s outcome. In other words, at the end of the
mechanism, no Pareto improvement can be made for any user or any group of
users to incrementally trade among themselves or trade with the pool. LE is a
relaxation of PO requiring that the mechanism should not leave any unfulfilled
demand that could have been satisfied by trading with the pool at a price desired
by the user. Our result is stated in the following theorem:

Theorem 1 (IC precludes LE or PO). No AMM mechanism can simultane-
ously achieve IC and LE (or PO), and this impossibility holds even in the weak
fair-sequencing model.

Having established that even LE is too strong to be compatible with IC, it
is clear that some notion of efficiency weaker than LE needs to be introduced.
Recall that Chan et al. [9] introduced a neat mechanism under the weak fair-
sequencing model that explicitly satisfies IC. Their mechanism also implicitly
satisfies a natural notion of efficiency that is slightly weaker than local efficiency.”
We refer to it as weak local efficiency (wLE). In comparison with LE, wLE cares
about achieving local efficiency only for “reasonable” orders — those that do not
insist on an exchange rate more stringent than the initial market price.

A trilemma among IC, wLE, and UP. We next ask whether uniform pricing (UP)
aids the design of incentive-compatible mechanisms with meaningful notions
of efficiency. Since we have established wLE as a meaningful efficiency notion

5 Our Theorem 1 provides a mathematical justification for why [9] only achieved this
weaker notion of efficiency.

A Trilemma in AMM Mechanism Design 5

compatible with IC, we refine the question and ask whether it is possible to
achieve IC, wLE, and UP simultaneously. We prove a trilemma-style theorem,
stating that one can choose any two out of these three properties, but it is
impossible to satisfy all three at the same time. This trilemma theorem can
be interpreted to mean that perhaps somewhat counterintuitively, although UP
naturally eliminates internal arbitrage, it is actually somewhat at odds with the
stronger notion of IC — asking for both UP and IC will result in only very
inefficient mechanisms. The intuition why UP does not lend to IC (contrary to
common belief) will be explained in more detail in Section 4.3 where we give a
natural mechanism that is UP + wLE but not IC.
Our trilemma result is stated in the following theorem:

Theorem 2 (Trilemma among IC, wLE, and UP). No AMM mechanism
can simultaneously achieve IC, wLE, and UP, and this impossibility holds even
in the weak fair-sequencing model. On the other hand, it is feasible to achieve
wLE + UP or IC + UP in the plain model (i.e., without the weak fair-sequencing
assumption), and it is feasible to achieve IC + wLE in the weak fair-sequencing
model.

Clearly, the main open question left by Theorem 2 as well as [9] is whether
we can achieve IC + wLE in the plain model, without the weak fair-sequencing
assumption. See more discussion on this in Section 5.

Additional results. While our paper is centered around understanding the price
of IC, we also explore the tension between UP and LE. We prove an impossibility
result showing that no AMM mechanism can simultaneously achieve UP and LE.
This demonstrates that LE is a very stringent notion from a different angle —
not only is it incompatible with IC, but also incompatible with UP. This again
justifies that it is natural to relax LE to wLE, which allows us to overcome this
impossibility since Theorem 2 implies the feasibility of UP + wLE.

1.2 Additional Related Work

Verifiable sequencing rules. A line of work has explored mitigating MEV at
the application layer. The model we adopt follows directly from Chan et al. [9],
which in turn drew inspiration from the elegant work of Ferreira and Parkes [12].
Notably, Chan et al. relax several stringent requirements of Ferreira and Parkes
to circumvent impossibility results. While Ferreira and Parkes describe their
approach as enforcing “verifiable sequencing rules” at the consensus layer to
mitigate MEV, it is in fact more desirable to view their sequencing rules as being
enforced by the smart contract application — ideally the consensus layer should
be agnostic of application-specific semantics. However, Ferreira and Parkes’s
model differs in nature from ours and that of Chan et al., since they impose a
couple of restrictive constraints: the orders must be fulfilled one after another,
and moreover, the pool’s state must respect the potential function after executing
every order, not just at the end of the batch. These requirements lead to very

6 Li, Shi, and Zhang

strong impossibility results as demonstrated by Ferreira and Parkes: not only
is IC impossible in their model, but even the weaker notion of “arbitrage free”
is impossible in their setting. Subsequently, Li et al. [19] studied the miner’s
profit-maximizing strategy under the greedy sequencing rule proposed in [12],
and the implications for users when the miner adopts the optimal strategy.

Batch clearing at uniform price. Several works have explored the idea of batch
clearing at a uniform price [1,7,8,22,23|. Uniform pricing is a desirable property
since it eliminates internal arbitrage, as well as well-known sandwich attacks.
Nevertheless, Zhang et al. [28] recently observed that miners can still extract
value from batch auctions and investigated profit-maximizing strategies for min-
ers.

Transaction fee mechanism design. A recent line of work on transaction fee
mechanism (TFM) design [10,11,13,24,25] explores how to design the blockchain
space auction. However, so far, this line of work is agnostic of application-level
MEV, since they fail to capture general utility functions that may depend on
transaction sequencing. Bahrani et al. [4] showed strong impossibility results
for solving the full spectrum of application-level MEV solely at the TFM layer.
In this sense, application-level mechanism design [9, 12| as well as our work
complement the line of work on TFM design by explicitly capturing application-
dependent semantics and utility functions.

2 Model

2.1 AMM Preliminaries
Order. Each order is of the form (¢,7, g, «) where

— the first field ¢t € {Buy(X), Buy(Y"), Sell(X), Sell(Y)} specifies the type of the
order;

— the second field » > 0 specifies the worst exchange rate the user is willing
to tolerate. Specifically, the rate r is expressed in terms of the price of each
unit of X, measured in units of Y. For a Buy(X) or Sell(Y') order, r specifies
the maximum units of Y the user is willing to pay in exchange for one unit
of X. For a Buy(Y') or Sell(X) order, r specifies the minimum units of ¥ the
user wants to get for selling each unit of X;

— the third field ¢ denotes the maximum number of units the user wants to
trade. For example, for a Sell(X) order, it means that the user wants to sell
at most ¢ units of X; and for a Buy(Y') order, it means that the user wants
to buy at most ¢ units of Y.

— the last field « is used to encode arbitrary auxiliary information that the
mechanism may take into account, e.g., identity information, timestamp of
the order, and so on.

A Trilemma in AMM Mechanism Design 7

AMM and potential function. There is a pool whose state is denoted by a pair
(X,Y) where X > 0 and Y > 0 denote the amount of the assets X and Y
remaining in the pool. Without risking ambiguity, we may use X and Y to
denote the pool state as well as to name the assets.

The pricing is defined through a potential function @(-,-) such that if (X,Y)
and (X', Y") are both valid pool states, it must be that #(X,Y) = &(X’,Y’). In
other words, if the initial pool state is (X,Y"), then to buy « units of X from the
pool, the payment in Y, denoted —y, must satisfy ¢(X — 2,V —y) = &(X,Y).
As a concrete example, the constant-product function $(X,Y) = X -Y is most
commonly adopted in Uniswap contracts.

It is standard to assume that ¢(X,Y) is increasing, differentiable, and con-
cave [9,12,19], which implies the following:

— Bijective mapping. Fix some initial pool state (X, Yp) and let C' := &(Xg,Yy) >
0. For every X > 0, there is a unique Y := Y (X) such that ¢(X,Y) = C.
Therefore, for convenience, we can view Y (X) as a function of X, whenever
C is clear from the context.

— No free lunch. Y (X) is a strictly decreasing function in X, that is, V0 < X, <
X1, Y(Xo) > Y(X1). In other words, to buy a positive amount of X from
the pool, one must pay a positive amount of Y to the pool.

— Increasing marginal cost. Suppose Xg < X7, then —%(Xo) > —%(Xl). In
other words, the marginal cost of X increases as one purchases more X from
the pool.

For convenience, we also refer to —%(XO) as the market rate when the pool
has X units of X, i.e., the price per unit of X for purchasing an infinitesimally
small amount of X from the pool.

AMM mechanism. We consider deterministic AMM mechanisms defined in [9].
The mechanism receives a batch of orders, and fully or partially executes a subset
of the orders. For each order in the batch, its outcome is denoted (z,y) which
means its net gain in X and Y, respectively. A negative value of = (or y) means
a loss in the asset X (or V). The mechanism should satisfy the following well-
formedness properties:

— Reasonable fulfillment. For a Buy(X)-type orders with quantity ¢, it must be
0 <z < q. For a Buy(Y)-type orders with quantity ¢, it must be 0 <y < q.
For a Sell(X)-type orders with quantity ¢, it must be 0 < —z < ¢. For a
Sell(Y)-type orders with quantity ¢, it must be 0 < —y < ¢. In other words,
no order should fulfill more than the desired quantity or fulfill a negative
amount (i.e., fulfill in the opposite direction of buy or sell).

— No free lunch. Either -y < 0, or x = y = 0. In other words, no order should
strictly gain in one type of asset without losing in the other.

— Individual rationality. For a Buy(X) or Sell(Y)-type order, it must be that
—% < r. For a Buy(Y') or Sell(X)-type order, it must be that —% > . In
other words, the executed exchange rate should be no worse than the rate
specified in the order.

8 Li, Shi, and Zhang

— Conformant to pricing function. After execution, let xyoy and 3¢ denote
the sum of all users’ net gain in X and Y, respectively. The end pool
state (X',Y”) := (X — @401, Y — Ytor) must satisfy the potential function
(XY =d(X,Y).

Like [9], our definition only requires that the potential function be respected
before and after executing the entire batch. In comparison, the earlier work of
Ferreira and Parkes [12] works in a more draconian model in which the orders
are fulfilled one after another, and the pool’s state must satisfy the potential
function after executing every order. For this reason, the impossibility results
in [12] are not applicable to our setting.

2.2 Strategy Space

We assume that each user has an intrinsic type T := (t,r, ¢, o) sharing the same
form as an order. For a direct revelation mechanism, the honest user strategy is
to truthfully report its intrinsic type.

For defining the strategy space, we consider two models called the plain model
and the weak fair-sequencing model respectively introduced in [9].

Plain model. The plain model is meant to capture mainstream consensus pro-
tocols today where the block producer (who can be a strategic player in our
mechanism) can fully control the block contents and the sequencing of transac-
tions in the block.

In the plain model, we assume that a strategic user (or miner) with intrinsic
type (t,r,q,«) may adopt one or more of the following strategies:

— Post zero or multiple arbitrary orders which may or may not reflect its
intrinsic type — this captures strategies that involve misreporting valuation
and demand, as well as posting of fake orders;

— Censor honest users’ orders — this captures a strategic miner’s ability to
exclude certain orders from the block;

— Arbitrarily misrepresent its own auxiliary information field «, or even modify
the « field of honest users’ orders — meant to capture the miner’s ability to
decide the sequencing of transactions within a block, where the arrival-time
and position information may be captured by the auxiliary information field
a.

— Decide its strategy after having observed honest users’ orders.

Weak fair-sequencing model. We will also work in a weak fair-sequencing model
defined in [9], meant to capture a new generation of consensus protocols that
employ a decentralized sequencer and rank orders based on their (approximate)
arrival times [2,3,15-17]. We stress that even in the weak fair-sequencing model,
it is possible for a strategic user to observe a victim’s order, post a dependent
order, and have the dependent order race against and front-run the victim’s
order. Such a front-running attack can succeed especially when the strategic

A Trilemma in AMM Mechanism Design 9

user’s network is faster than the victim’s. In particular, we stress that the weak
fair-sequencing model is sequencing orders based on their arrival times, not the
time of submission of these orders — for this reason, front-running is still possible
in this model.

Recall that a user’s intrinsic type has the form (¢, r, ¢, o) where (¢, r, ¢) denotes
the user’s true valuation and budget. In the weak fair-sequencing model, we use
the « field to denote the order’s arrival time — a smaller & means that the user
arrives earlier.

We shall assume that under honest strategy, a user’s order should always
have the correct o whose value is determined by nature, and equal to the time
at which the order is generated plus the user’s network delay. A strategic user is
allowed to delay the submission of its order. More specifically, a strategic user
or miner can adopt the following strategies in the weak fair-sequencing model:

— A strategic user or miner with intrinsic type (¢, 7, ¢,) is allowed to post zero
or multiple bids of the form (_, , ') as long as o/ > a. This captures
misreporting valuation and demand, posting fake orders, as well as delaying
the posting of one’s orders.

— The strategic user or miner can decide its strategy after observing honest
users’ orders.

Compared to the plain model, the weak fair-sequencing model imposes cer-
tain restrictions on the strategy space. Specifically, in the plain model, a strategic
user or miner can arbitrarily modify the « field of its own order or even others’
orders, and a strategic miner may censor honest users’ orders. In the weak fair-
sequencing model, a strategic user or miner can no longer under-report its «,
cannot modify honest users’ «, and cannot censor honest users’ orders, because
the sequencing of the transactions is determined by the underlying decentral-
ized sequencer. Importantly, despite these constraints on the strategy space, the
weak fair-sequencing model still permits front-running attacks as mentioned ear-
lier, and thus mechanism design remains non-trivial even under this restricted
strategy space.

2.3 Utility Ranking

Following the definitional paradigm of [9], we define utility as a partial ranking
over outcomes, which expresses a user’s preferences among the different possible
outcomes.

Recall that we use a pair (z,y) to denote the outcome of a user’s order,
indicating a net gain of z in X, and a net gain of y in Y (where a net loss is
captured as negative gain). Consider two outcomes (xo,yo) and (z1,y1). The
following rules define a natural partial ordering of preferences among outcomes
for a user with intrinsic type T' = (Buy(X),r,q,):

1. If 29 < 21,90 < 41, then (zo,y0) =1 (z1,y1). In other words, the latter
outcome is at least as good as the former, if the latter outcome gains at least

10 Li, Shi, and Zhang

as much as the former in both assets. Further, if at least one < is replaced
with <, then we say that (xg,y0) <7 (x1,91), i.e., the user strictly prefers
the latter outcome.

2. Mfag<x <q(orqg<mz <), and r-(x1 —x0) > Yo — Y1, then (xo,y0) 37
(21, y1). In other words, the latter outcome is at least as good as the former
one, if it is closer to satisfying the demand ¢, and moreover, the user paid
at most r marginal price for each extra unit of X in the latter outcome.
Moreover, if 7 - (z1 — x9) > yo — y1 is replaced with strict inequality, that
is, r - (x1 — x0) > Yo — Y1, then we say (zo,yo0) <1 (z1,y1), i-e., the latter
outcome is strictly preferred.

3. The standard transitivity rule holds for <7 and <.

For other types including Buy(Y'), Sell(X), and Sell(Y"), a partial ordering can
be symmetrically defined — the full definition can be found in the full version.

Remark 1 (Why define utility as a partial ordering). As explained in [9], the
reason for defining utility as a partial ordering rather than a numerical value is
to explicitly respect the intentions of users’ intrinsic types.

For example, if a user’s intrinsic type is to buy up to ¢ units of X at a
maximum price of r. Suppose in one outcome, this user fulfills his demand of ¢
paying —y units of Y. In another outcome, the user buys g+ 1 units of X paying
(—y) + r/2 units of Y. Then, the latter outcome is incomparable to the former
one, because the user obtained the extra unit (which overshoots the demand)
but at a favorable marginal price of r/2.

In another example, the strategic player could be the miner, who has no
intrinsic demand for the assets. However, the miner might be able to get an
outcome (x,y) where z > 0 and y = 0, by for example sandwich attacks. Then
this outcome (z,y) is strictly better than the outcome (0, 0).

2.4 Desirable Properties of an AMM Mechanism

Incentive compatibility. In the definition below, we use HS(T) to denote the
honest strategy of a user with intrinsic type T'— for a direct-revelation mecha-
nism, the honest strategy is simply to reveal the user’s true type. Further, we use
out*(Xo, Yo, b) to denote the outcome of user © when the mechanism is executed
over initial pool state Pool(Xy, Yp), and a vector of orders b.

Definition 1 (Incentive compatibility (IC) [9]). Given an AMM mecha-
nism, we say that it satisfies IC (w.r.t. some partial ordering relation =<r), iff
for any initial pool state Pool(Xy,Yy), for any vector of orders b_,, belonging to
all other users except u, for any intrinsic type T of the strategic player u, for any
possible strategic order vector b’ of the player u, either out*(Xo, Yo, b_y, HS(T)) =1
out(Xo, Yo, b_y, b’) or out*(Xo, Yy, b_y, HS(T)) and out*(Xo, Yy, b_y,b") are
incomparable w.r.t. <p.

More intuitively, the definition says that no strategic play can result in a
strictly better outcome than the honest strategy. Note that the “strategic player

A Trilemma in AMM Mechanism Design 11

u” above could be either a strategic user or miner, and the boldface b’ above
is intended to capture the possibility of submitting multiple orders (i.e., Sybil
attacks).

Efficiency properties. We may want the mechanism to enjoy certain efficiency
properties. First, a very natural notion is Pareto optimality (PO) defined below,
where preferences among outcomes are based on the partial ordering notions.

Definition 2 (Pareto optimal (PO)). We say that an AMM mechanism is
Pareto optimal iff the following holds: for any initial pool state and any set
of users with arbitrary true types, there does mot exist another legal outcome
in which some user’s outcome s strictly better than the mechanism’s outcome,
while every other user’s outcome is at least as good as the mechanism’s outcome.

PO can also be interpreted to mean that the users cannot achieve a Pareto
improvement by further trading among themselves or trading with the pool. We
next define a relaxed notion of efficiency, which requires that the mechanism
should not leave any unfulfilled demand that could have been satisfied through
trading with the pool at a price desired by the user.

Definition 3 (Locally efficient (LE)). An AMM mechanism is said to be
locally efficient, iff after execution, the ending exchange rate is no smaller than
the rate of any Buy(X) or Sell(Y) order that is not completely fulfilled, and
no larger than the rate of any Buy(Y) or Sell(X) order that is not completely
fulfilled.

We note that LE is naturally desirable in the context of AMMSs, since if,
after the mechanism executes, some users still wish to continue trading at the
pool’s ending state, the mechanism has failed to realize obvious gains in social
efficiency, which the notion of LE is intended to preclude.

We next define a further relaxed notion of efficiency called weak local effi-
ciency, which places the same requirements as LE but only for “reasonable” users
who do not demand a price more stringent than the initial market price.

Definition 4 (Weakly locally efficient (WLE)). A Buy(X) or Sell(Y') order
1s said to be eligible iff its rate is no less than the initial market price. Similarly,
a Sell(X) or Buy(Y) order is said to be eligible iff its rate is no higher than the
initial market price. An AMM mechanism is said to be weakly locally efficient
(wLE) iff the same conditions of LE are guaranteed, but now only for eligible
orders.

The following fact follows directly from the definitions.
Fact 1 PO — LE = wLE.

Definition 5 (Uniform pricing (UP)). All orders that get (partially) exe-
cuted, no matter the type, must all trade at the same exchange rate.

12 Li, Shi, and Zhang
3 Impossibility Results

We first prove that IC precludes LE.

Theorem 3 (IC + LE — impossible). No AMM mechanism can simulta-
neously satisfy incentive compatibility and local efficiency. Further, this impos-
sibility holds even in the weak fair-sequencing model.

Remark 2. Chan et al. [9] showed only feasibility results, and therefore they
allowed the strategic player to arbitrarily modify anyone’s auxiliary information
field « in the plain model. This make their feasibility result (for the weaker
arbitrage resilience property) stronger. Because we are proving an impossibility
result, it will strengthen the result if we make the strategy space in the plain
model more restricted. In practice, one natural scenario is that the the auxiliary
information field a encodes the user’s cryptographic identity such as public key.
In this case, although the strategic player cannot arbitrarily modify honest users’
public keys, the above impossibility still holds: suppose that honest users sample
their keys at random, then each time the strategic player samples a random key,
there is a 1/2 probability that it will be favored in the tie-breaking. Therefore,
the strategic player can simply perform rejection-sampling till it finds a key that
is favored in the tie-breaking. The expected number of trials needed is 2.

We also prove that UP and LE are not compatible — since this impossibility
does not involve IC, it holds regardless of the strategy space.

Theorem 4 (UP + LE = impossible). No AMM mechanism can simul-
taneously satisfy uniform pricing and local efficiency.

Finally, we show that it is not possible to have a mechanism satisfying all
three properties simultaneously. Our impossibility proof only uses two Buy(X)
orders, thus for this special case LE and wLE are equivalent.

Theorem 5 (IC + UP + wLE —> impossible). No AMM mechanism can
simultaneously satisfy incentive compatibility, uniform pricing, and weak local
efficiency. This impossibility holds as long as the strategic player is allowed to
misreport its valuation and quantity, that is, the impossibility holds even in the
weak fair-sequencing model, and even in a permissioned model where fake bids
are not allowed.

All the proofs can be found in the full version.

4 Feasibility of Satisfying Any Two Properties

In this section, we demonstrate that for any two properties among IC, wLE,
and UP, there exists a mechanism that satisfies them. We examine each pair
separately below.

A Trilemma in AMM Mechanism Design 13

4.1 IC 4 wLE

Chan, Wu, and Shi [9] proposed a neat mechanism that satisfies IC and wLE
in the weak fair-sequencing model. We stress that all our impossibility results
(Theorem 3, Theorem 4, Theorem 5) hold in the weak fair-sequencing model.
An important open question left is whether we can remove the fair-sequencing
assumption and achieve IC + wLE in the plain model.

4.2 1IC 4 UP

Note that if one is only interested in incentive compatibility and uniform pricing,
then the feasibility is trivial since we didn’t specify the efficiency guarantee and
a naive mechanism could always do nothing. However, our goal in this part is to
show an alternative interesting mechanism that we have found, formally shown
in Figure 1.

At a high level, Mechanism 1 works as follows: Ignore all Sell(X) or Buy(Y)
orders. The remaining orders are either Buy(X) or Sell(Y'). Now, rank the orders
based on their declared exchange rate, and let 1 and 75 denote the highest and
the second-highest exchange rate, respectively. Let = be the number of units of
X that must be taken from the pool such that the average price paid is equal
to ro. If the first user can absorb z units of X without exceeding its declared
quantity or budget, then allocate x units of X to the first user, and allocate 0
to everyone else. Otherwise, allocate 0 to everyone.

The nice property of Mechanism 1 is that it is a non-trivial mechanism that
always satisfies IC and UP. Furthermore, in certain cases, it also achieves wLE.

Theorem 6. Mechanism 1 satisfies IC and UP. Furthermore, if there are only
Buy(X) and Sell(Y') orders, and the user with the highest exchange rate has a
sufficiently large quantity or budget, then the mechanism also achieves wLE.

4.3 UP + wLE

Simple case: all orders are the same type. If all orders are the same type — take
Buy(X) as an example — then there is a simple mechanism that satisfies UP
+ wLE. Basically, let 74y4(x) denote the average price per unit for purchasing
2 units of X from the pool. Because of the increasing marginal cost property
(see Section 2.1), ravg(z) is an increasing function in z. Further, as « goes to 0,
Tave () goes to the initial market price.

Suppose we are given a batch of orders {¢;,7;,¢;, }; where we may assume
that every r; is at least the initial market price (otherwise, we simply discard
the order). Let D(r) := >, 1(r; >) - ¢; denote the total demand that must be
fulfilled to respect wLE at any rate r > 0, where 1(+) is the indicator function.
The mechanism finds the 2* € [0,) ", ¢;] such that D(rena(2*)) = 2, and buys
2* units of X from the pool and allocates them to the orders whose declared
rate is at least reng(2*). In particular, all orders whose declared rate is strictly
larger than renq(2*) will be fully fulfilled, and the orders whose declared rate is

14 Li, Shi, and Zhang

Input: The initial pool state (Xo,Yo), the potential function @, and a set of
orders b. Since the mechanism does not make use of the auxiliary information
field «, each order is simply represented as a tuple (¢,7,q).

Output: A net gain in assets X and Y for each order.

Mechanism:

1. Discard all Sell(X) or Buy(Y) orders.

2. Discard all Buy(X)/Sell(Y) orders whose declared exchange rate r <
— 4% (Xo).

3. If no orders remain, then do nothing. Otherwise, go to the next step.

4. Rank the remaining orders in descending order of their declared exchange
rate. Let (t1,71,q1) be the order with the highest exchange rate and
(t2,72,q2) the order with the second-highest exchange rate. If multiple or-
ders share the highest exchange rate, which implies r1 = r2, rank them

arbitrarily. If only one order remains, set ro = f%(Xo).
5. Let = be such that W = 3. Let 2’ be such that — 9% (Xo—2') =
T1.

(a) Ift; = Buy(X) and q1 > =, allocate * = max(x, min(z’, 1)) units of X
to the first user (the one with rate 1), and charge Y (Xo —z*) — Y (Xo)
units of Y. All other users receive zero and pay nothing.

(b) If t1 = Sell(Y) and Az = X(Yo) — X(Yo + q1) > z, allocate z* =
max(z, min(z’, Az)) units of X to the first user (the one with rate 71),
and charge Y (Xo —z*) — Y (Xo) units of Y. All other users receive zero
and pay nothing.

(c) Otherwise, all users receive zero and pay nothing.

Fig. 1. Mechanism 1 satisfying IC + UP

exactly renq(2*) might be partially fulfilled. Everyone pays a uniform per-unit
price of rayg(z*). It is not hard to see that both UP and wLE are guaranteed by
design. It remains to argue that an x satisfying the above condition must exist
— this can be seen from the combination of the following facts: (1) D(7enda(z))
is non-increasing in z; and (2) D(max; {r;} +€) = 0 and D(rena(0)) = >, ¢i-

We now explain why the above mechanism is not IC, which might be coun-
terintuitive at first sight, because one might be tempted to think that the fair
pricing offered by UP facilitates IC. Observe that under truthful reporting, ev-
ery executed order ¢ always receives positive utility, because their paid price is
Tavg (2*) < Tena(2*) < 7;. Suppose that there is some user ¢ with r; = repa(*)—€
and g; = €5. Following the description of the mechanism above, this order is not
executed and the user gets zero utility under truthful reporting. However, the
following strategy will allow ¢ to get positive utility. Instead of truthful report-
ing, i slightly over-reports its valuation, allowing the order to get executed. As
long as ¢; is sufficiently small, the induced uniform price will be less than the
order’s true valuation, making its utility positive.

A Trilemma in AMM Mechanism Design 15

The more general case: all types of orders. Next, we extend the idea above to
the general setting with all types of orders and present the complete mechanism
in Figure 2.

Theorem 7. Mechanism 2 satisfies UP and wLE.

All the proofs can be found in the full version.

5 Summary and Future Directions

In this work, we reexamine the problem of AMM mechanism design with respect
to the widely desired properties including IC, LE/wLE, and UP. Our main tech-
nical contribution is the establishment of a trilemma among IC, wLE, and UP.
In addition, we also prove that no AMM mechanism can simultaneously achieve
IC + LE or UP + LE.

The main open question left by this paper and [9] is whether there exists
a mechanism that is IC and wLE in the plain model (without the weak fair-
sequencing assumption). We conjecture that there is no such mechanism, which,
if true, would imply the necessity of a consensus guarantee in AMM mechanism
design. We view such an impossibility result as one of the most crucial justi-
fications for the “consensus + application” paradigm for mitigating MEV. On
the other hand, a positive answer to this question would yield an exceptionally
strong result: the existence of an AMM mechanism that achieves both IC and
wLE in the plain model. Note that we consider such a mechanism highly power-
ful since our notion of IC implies a very strong incentive guarantee with respect
to a very general strategy space, including misreporting valuation and demand,
splitting real orders, posting fake orders, censoring honest users’ orders, and oth-
ers. Given this “win-win” situation, we believe that studying this problem is of
fundamental interest for future work.

On the feasibility side, a natural next step is to investigate mechanism de-
sign for multi-token AMMSs. In particular, an important open question is whether
the IC + wLE mechanism developed for the two-asset setting [9] can be gener-
alized to multi-asset AMMs under the same weak fair-sequencing assumptions.
Similarly, one may ask whether it is possible to construct a mechanism that
satisfies UP 4+ wLE or IC 4 UP in the multi-token setting. Exploring the extent
to which these feasibility results can be generalized is a crucial step toward a
deeper understanding of mechanism design for multi-token AMMs.

Speaking more broadly, it seems unlikely that either the consensus layer
or the application layer alone can fully eliminate MEV. This makes combined
“consensus -+ application” approaches particularly appealing. For example, the
work [9] demonstrates that AMM mechanism design benefits substantially from
even weak consensus guarantees — results that appear difficult to achieve oth-
erwise. It is therefore worth pursuing this line of research in both directions. On
the one hand, can weak consensus guarantees also yield improvements for other
DeFi applications such as decentralized lending or stablecoins? On the other
hand, can insights from DeFi mechanism design help abstract new desiderata
that, in turn, advance the study of consensus itself?

16

Li, Shi, and Zhang

Input: The initial pool state (Xo,Yo), the potential function @, and a set of
orders b. Since the mechanism does not make use of the auxiliary information
field «, each order is simply represented as a tuple (¢,7,q).

Output: A net gain in assets X and Y for each order.

Mechanism:

1. Let ro :== —9¥(Xo) be the initial market price. Discard all Buy(X)/Sell(Y)

orders whose declared exchange rate r < rg, and discard all Buy(Y") /Sell(X)
orders whose declared rate r > ro. Let b’ be the remaining orders.

. Let D denote the set of Buy(X)/Sell(Y') orders in b’ which demands X, and

S denote the set of Buy(Y)/Sell(X) orders in b’ which supplies X. More
specifically, we let

Do+ = {(t,r,q) € b’ | t = Buy(X)/Sell(Y) and r > r*},
D—.» ={(t,r,q) € b’ |t = Buy(X)/Sell(Y) and r = r*},
S<rx ={(t,7,q) € b’ | t = Buy(Y)/Sell(X) and r < r*},
S—rx ={(t,r,q) € b’ | t = Buy(Y)/Sell(X) and r = 7*}.

For a set A € {Dsp+,D—ps,S<p,S=r=} of orders, denote their
demand/supply quantity under an eligible price p by Q(A,p) =

) L Ja if t = Buy(X)/Sell(X);
Z(t,T,q)eA /B(tv T, qvp)7 where /B(tv T, q7p) - {q/p’ ift = Buy(Y)/SeII(Y)

For any rate r* # 7o that corresponds to the pool state (X™*,Y™), denote
p(r) = ¥ =0 and Az(r*) = Xo — X*. Define p(ro) = ro and Az(ro) = 0.

Xo—X*

. Find r* > 0 such that one of the following conditions is met:

(a) Q(D>r+;p(r7)) < Q(S<r US=p(r7)) + Ax(r?) <
Q (D>r* UD—r+; p(r*)) and r* > 71o;

(b) Q(S<r=;p(r")) < Q(DsrxUD=;p(r")) — Az(r’) <
Q (S<rx US—p=;p(r")) and r* < ro.

. If r* satisfies condition (a) above, trade @ (S<y+ US—p=;p(r")) + Az(r")

units of X at the price p(r*). Specifically, all orders in S+, S—y+, and D
are fully fulfilled; orders in D—,« are partially fulfilled such that the ful-
filled quantity is exactly Q (S<y+ U S—r+;(r")) + Az(r™) — Q (D>r=; B(17)).
Az(r*) > 0 units of X are sold by the pool.

If r* satisfies condition (b) above, trade @ (Dsy* U D—=; (")) — Az (r™)
units of X at the price p(r*). Specifically, all orders in Ds,=, D—r+, and
S, are fully fulfilled; orders in S—,» are partially fulfilled such that the ful-
filled quantity is exactly @ (Dsrx U D—r=; B(r")) — Az(r*) — Q (S<r=; B(r")).
—Ax(r*) > 0 units of X are bought by the pool.

Fig. 2. Mechanism 2 satisfying UP + wLE

Acknowledgments

This work is in part supported by NSF awards 2212746, 2044679, a Packard
Fellowship, a gift from the Ethereum Foundation, and a generous gift from the

late Nikolai Mushegian.

A Trilemma in AMM Mechanism Design 17

References

1. https://cow.fi/cow-protocol.

2. Challenging periods reimagined: The key role of se-
quencer decentralization. https:/ /ethresear.ch/t/
challenging-periods-reimagined-the-key-role-of-sequencer-decentralization /15110.

3. The €spresso sequencer. https://hackmd.io/@EspressoSystems/
EspressoSequencer.

4. Maryam Bahrani, Pranav Garimidi, and Tim Roughgarden. Transaction Fee Mech-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

anism Design in a Post-MEV World. In 6th Conference on Advances in Financial
Technologies, AFT 2024, September 23-25, 2024, Vienna, Austria, volume 316 of
LIPIcs, pages 29:1-29:24. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2024.
Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. A theory
of Automated Market Makers in DeFi. CoRR, 2021.

Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch Lafuente. Maximiz-
ing Extractable Value From Automated Market Makers. In Financial Cryptography
and Data Security: 26th International Conference, FC 2022, Grenada, May 2-6,
2022, Revised Selected Papers, 2022.

Andrea Canidio and Robin Fritsch. Batching Trades on Automated Market Mak-
ers. In AFT, 2023.

Andrea Canidio and Robin Fritsch. Arbitrageurs’ profits, LVR, and sandwich
attacks: batch trading as an AMM design response. 2024.

T-H. Hubert Chan, Ke Wu, and Elaine Shi. Mechanism Design for Automated
Market Makers. In AFT, 2025.

Hao Chung, Tim Roughgarden, and Elaine Shi. Collusion-Resilience in Transaction
Fee Mechanism Design. In EC, pages 1045-1073. ACM, 2024.

Hao Chung and Elaine Shi. Foundations of Transaction Fee Mechanism Design. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 3856-3899. STAM, 2023.

Matheus Venturyne Xavier Ferreira and David C. Parkes. Credible Decentralized
Exchange Design via Verifiable Sequencing Rules. In STOC, 2023.

Aadityan Ganesh, Clayton Thomas, and S. Matthew Weinberg. Revisiting the
Primitives of Transaction Fee Mechanism Design. In EC, page 703. ACM, 2024.
Lioba Heimbach and Roger Wattenhofer. Eliminating Sandwich Attacks with the
Help of Game Theory. In Proceedings of the 2022 ACM on Asia Conference on
Computer and Communications Security, 2022.

Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-Fair Consensus in
the Permissionless Setting. In APKC ’22: Proceedings of the 9th ACM on ASIA
Public-Key Cryptography Workshop, 2022.

Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan.
Themis: Fast, Strong Order-Fairness in Byzantine Consensus. 2021.

Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-Fairness for
Byzantine Consensus. In CRYPTO, page 451-480, 2020.

Kshitij Kulkarni, Theo Diamandis, and Tarun Chitra. @ Towards a Theory
of Maximal Extractable Value I: Constant Function Market Makers. CoRR,
abs/2207.11835, 2022.

Yuhao Li, Menggian Zhang, Jichen Li, Elynn Chen, Xi Chen, and Xiaotie Deng.
MEV Makes Everyone Happy under Greedy Sequencing Rule. In Proceedings of
the 2023 Workshop on Decentralized Finance and Security, DeFi '23, page 9-15.
Association for Computing Machinery, 2023.

https://cow.fi/cow-protocol
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer-decentralization/15110
https://ethresear.ch/t/challenging-periods-reimagined-the-key-role-of-sequencer-decentralization/15110
https://hackmd.io/@EspressoSystems/EspressoSequencer
https://hackmd.io/@EspressoSystems/EspressoSequencer

18

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Li, Shi, and Zhang

Kaihua Qin, Liyi Zhou, and Arthur Gervais. Quantifying Blockchain Extractable
Value: How dark is the forest? In 48rd IEEE Symposium on Security and Privacy,
SP, 2022.

Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais. Attacking the
DeFi Ecosystem with Flash Loans for Fun and Profit. In Financial Cryptography
and Data Security: 25th International Conference, FC 2021, Virtual Event, March
1-5, 2021, Revised Selected Papers, Part I, 2021.

Geoffrey Ramseyer, Ashish Goel, and David Maziéres. SPEEDEX: A Scalable, Par-
allelizable, and Economically Efficient Decentralized EXchange. In 20th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 23), pages
849-875, 2023.

Geoffrey Ramseyer, Mohak Goyal, Ashish Goel, and David Maziéres. Augmenting
Batch Exchanges with Constant Function Market Makers. In EC, 2024.

Tim Roughgarden. Transaction Fee Mechanism Design. In Proceedings of the 22nd
ACM Conference on Economics and Computation (EC), pages 792-792, 2021.
Elaine Shi, Hao Chung, and Ke Wu. What Can Cryptography Do for Decentralized
Mechanism Design? In ITCS, volume 251 of LIPIcs, pages 97:1-97:22. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2023.

Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK: Decentralized
Exchanges (DEX) with Automated Market Maker (AMM) Protocols. 55(11), 2023.
Sen Yang, Kartik Nayak, and Fan Zhang. Decentralization of Ethereum’s Builder
Market. In 2025 IEEE Symposium on Security and Privacy (SP), page 1512-1530.
IEEE, May 2025.

Menggian Zhang, Yuhao Li, Xinyuan Sun, Elynn Chen, and Xi Chen. Maximal
Extractable Value in Batch Auctions. In Proceedings of the 26th ACM Conference
on Economics and Computation (EC), page 510, 2025.

Patrick Zust. Analyzing and Preventing Sandwich Attacks in Ethereum. Bachelor’s
thesis.

	A Trilemma in AMM Mechanism Design

