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Abstract. Blockchain protocols often seek to procure computationally
challenging work from a decentralized set of participants. While there
are simple procurement auctions that result in the minimal cost of ac-
quisition and maximal efficiency, they also lead to concentration in the
provider set due to the winner-take-all market structure. We design and
analyze single-good procurement auctions that balance social-cost min-
imization (at the extreme, a winner-take-all auction) with decentraliza-
tion (at the extreme, a uniform allocation). We first give a dominant-
strategy incentive-compatible (DSIC) mechanism explicitly designed to
implement non-winner-take-all allocations. Our allocation rule uniquely
solves an optimization with respect to a modified social-cost metric that
penalizes large, single-player concentrations and is parameterized with a
curvature value, a;, with @ — 0 implementing the uniform allocation and
a — oo implementing the winner-take-all allocation. We further quantify
the loss in social cost of this mechanism as a function of «.

We then propose two alternative mechanisms, each addressing a
limitation of the DSIC mechanism, namely a lack of Sybil-resistance
and a complex payment rule. First, we examine a variation of Tullock
contests to achieve a non-winner-take-all Sybil-proof procurement mech-
anism. Second, we consider a mechanism with the same allocation rule
as the DSIC mechanism but with an alternative payment rule in which
producers are simply paid proportionally to their bids. This provides a
much simpler payment rule which, while not DSIC, still results in the
mechanism being ex-post “safe” (where there exists a bidding strategy
that is guaranteed to result in non-negative utility) for participating bid-
ders. For both non-DSIC mechanisms, we characterize the equilibrium
allocations and prove price of anarchy bounds.

1 Introduction

Many blockchain-related protocols face procurement problems, in which the pro-
tocol must secure services from a permissionless set of providers. For example,
layer-one blockchain protocols require validators to secure the network, prover
marketplaces gather provers to fulfill requests for succinct proofs, and decentral-
ized inference networks recruit GPU providers to carry out queries. Procurement
problems are well-studied in the traditional mechanism design literature, where
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the focus has generally been on efficient mechanisms that seek to allocate work
to parties that can complete the work at the lowest cost. Procurement mecha-
nisms that focus solely on minimizing costs lead to winner-take-all outcomes,
where the single most efficient service provider consistently wins all the work.

Blockchain-related applications, however, often additionally require a “suffi-
ciently decentralized” provider set. For example, a typical PBFT-style consensus
protocol requires a sufficiently large number of distinct validators in order to be
confident that fewer than one-third of them are faulty. Similarly, a prover or
inference network requires a sufficient number of active providers to ensure that
a single one cannot cause a liveness failure for the protocol’s consumers.

Winner-take-all procurement encourages centralization, with all but the most
efficient provider leaving the market or consolidating with the most efficient one.
An end state with a single provider would threaten the security assumptions of
many blockchain-related applications, and more generally, can be economically
undesirable for several reasons:

— Once a single service provider has crowded out their competition, it can
price-gouge by charging monopoly prices.

— Having only a single service provider makes the procurer vulnerable to the

provider failing for any number of reasons.

With no competition, there are no incentives for a single service provider to

make investments in decreasing their cost.

In case the type of work demanded changes in the future, it is favorable to

have multiple providers with different specialties available.

— Once a single service provider dominates the market, it can undercut costs
whenever a new participant attempts to enter the market, defending their
monopoly.

In practice, blockchain-related protocols are often designed to maintain a
sufficiently decentralized set of providers. For instance, in addition to acting as
Sybil-resistance mechanisms, proof-of-work and proof-of-stake convert earning
consensus rewards into a Tullock contest, a mechanism in which many nodes
participate at equilibrium instead of only the most efficient one [1]. Similarly, in
prover markets, proposals have been made to explicitly trade off efficiency for a
more robust set of providers [19]. These examples demonstrate the importance
of understanding the design space of procurement mechanisms that go beyond
pure cost-minimization. As blockchain protocols and their applications expand
to new contexts, these mechanisms will become increasingly important. This
work initiates the exploration of this design space through the study of three
natural mechanisms and their properties, detailed in the next section.

1.1 Summary of results

This work is an applied modeling contribution that serves to motivate and discuss
trade-offs in the study of procurement in blockchain settings. We model the
procurement game and define a set of natural properties that practitioners may
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find desirable, along with giving mechanisms for achieving different subsets of
these properties. We study three mechanisms under slightly different models,
which we discuss in more detail below, but summarize here for clarity. We start
by considering an incomplete information setting where bidders’ costs are private
and examine a truthful mechanism that explicitly implements a non-winner-
take-all allocation. This mechanism, however, has a couple of clear downsides:
the payment rule is both difficult for bidders to interpret and for the protocol
to implement, and is not Sybil-proof. Additionally, this mechanism can result
in arbitrarily high payments for the protocol, but we give a modification that
allows the protocol to bound its costs with the downside of a potentially more
centralized allocation. To address these downsides, we consider two additional
mechanisms. Both mechanisms are non-truthful, and thus we move from the
incomplete to the complete information setting, where bidders’ costs are common
knowledge to analyze the mechanisms’ pure Nash equilibria. The first of these
mechanisms is essentially a Tullock contest which is Sybil-proof and allows the
protocol to control the total payments it gives out. However, this mechanism may
still be difficult for bidders to participate in and may even leave bidders with
negative utilities for participating. The second mechanism we consider uses the
same allocation rule as the truthful mechanism but with a paid-as-bid payment
rule, where bidders are paid exactly proportional to their bids and the amount
of work they were allocated. This mechanism is comparatively easier for bidders
to reason about, with the downside of not being Sybil-proof and potentially
resulting in arbitrarily high payments. A reserve price can be used to cap the
total payments, but we only analyze the equilibria without a reserve.

We view the present work as an important first step in discussing the trade-
offs and desiderata of decentralized procurement mechanisms, while stopping
short of proposing a definitive procurement mechanism for protocols to use. The
mechanisms we introduce are analyzed under different informational assumptions
and thus not directly comparable. Nevertheless, each of the three mechanisms
captures important features of interest to protocol designers and can serve as
building blocks for the future. We leave a unified model and a characterization
of an optimal mechanism for this setting as important future work.

Section 3 introduces a-proportional allocation rules (a-PARs) which imple-
ment allocations minimizing an a-scaled social cost metric that penalizes al-
locations with large single-player concentrations, explicitly optimizing for non-
winner-take-all allocations. These allocation rules are monotone and thus truth-
fully implementable via the corresponding Myersonian payment rules. We char-
acterize the trade-off between social cost (where winner-take-all, implemented by
taking o — 00, is maximally efficient) and “decentralization” (where the uniform
allocation rule, implemented by taking o — 0, is maximally decentralized) for
these mechanisms by showing the social cost scales in the number of players, n,
and the protocol-selected a parameter as 1 + (n/a)'/®. This DSIC mechanism
has two principal drawbacks that, depending on the details of the application,
motivate considering alternative procurement mechanisms. First, the mechanism
is not Sybil-proof. Second, its payment rule—the unique payment rule that can



4 Garimidi et al.

be coupled with an a-PAR to produce a DSIC mechanism—is complex to im-
plement and hard to interpret for bidders.

Section 4 presents a Sybil-proof mechanism that we call a Tullock procure-
ment contest. We shift focus here to the complete-information setting (the stan-
dard setting for the analysis of Tullock contests), in which each supplier’s cost of
production is common knowledge. This assumption is reasonable in the context
of mechanisms that are run repeatedly with public bids (as in the case of many
blockchain-related applications), as market participants may learn each other’s
costs over time. (See [5] for a more extended discussion of this point in the con-
text of the complete-information analysis of generalized second-price auctions
for online advertising.) Here, we prove the existence and uniqueness of PNE in
the game induced by a Tullock procurement contest. We then bound the social
cost of the PNE, and show that as the auctioneer increases their budget of re-
wards, the social cost at equilibrium increases, but the allocation becomes more
evenly distributed across providers. In particular, as the reward budget grows
increasingly large, with n competing bidders, their allocations converge to 1/n.

Section 5 steps back and instead uses a simple to implement and interpret
“paid-as-bid” payment rule with the same a-PAR allocations as the DSIC mech-
anism. Beyond simplicity, any participant who bids at least their true cost is
guaranteed non-negative utility, no matter what the other participants bid (we
call this property ex-post safety). Unfortunately, this mechanism is not Sybil-
proof. We prove the existence and uniqueness of PNE for this mechanism. Fur-
ther, we implicitly characterize the equilibrium allocations and the associated
worst-case cost vectors. We parameterize this class of mechanisms by «, where
as a grows increasingly large, the mechanism concentrates an increasing amount
of the allocation between the lowest-cost bidders. We show that at equilibrium,
every agent’s allocation is upper bounded by 1 — 1/a. Additionally, we provide
numerical results demonstrating how the price of anarchy scales with the num-
ber of players and the disparity between their respective costs. For example, we
show that with 16 participants that are no worse than 100% more costly than
the best prover, the price of anarchy of the a = 4 mechanism is no more than
1.4 (i.e., a 40% degradation in the social cost). Section 6 concludes and outlines
future work.

1.2 Related Work

Procurement auctions. Procurement or “reverse” auctions have a rich literature,
finding numerous applications in practice. While the breadth of topics is too
deep to cover here, see [4] for a full treatment, we focus on settings where the
auctioneer sacrifices minimizing their cost to ensure more equitable outcomes.
[14] considers a setting similar to ours, where they model the cost to the auc-
tioneer of agents leaving the auction if they are not allocated enough work. To
address this, they study a threshold allocation rule where the lowest k producer
bids are each allocated exactly 1/k of the production rights. They prove that
setting a lower threshold (thus effectively increasing k) can lead to higher rev-
enue in the repeated game despite not being revenue maximizing in the one-shot
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game (where £ = 1 would be optimal). [3] studies multi-dimensional procure-
ment auctions, where the price and quality of the produced good are considered.
This opened a line of literature considering non-price features when deciding
how to award government contracts and was grounded in how the Department
of Defense handled contracts and negotiations. [12] extend this to consider that
the US government restricts entry in procurement auctions for many reasons:
(i) regulatory restrictions on the producers (e.g., domestic vs. foreign), (ii) small
business concerns (e.g., promoting and supporting allocation to businesses that
otherwise wouldn’t be competitive), and (iii) discretionary reasons, a catchall.
The “small business concerns” are most relevant to our work and were also stud-
ied explicitly in [17], which demonstrated that small business participation in
procurement auctions would be reduced by 40% without a significant portion
of the budget being set aside for them. Additionally, they show that the pro-
curement cost would increase significantly without the increased competition
facilitated by the small business subsidy.

Supply-side bidding and supply function equilibria. Our work relates to the op-
erations research literature of firms competing to produce some supply of a
homogeneous good, also known as Cournot competition. Most notably, [15] gen-
eralizes Cournot’s model to allow producers to specify a more general class of
“supply functions,” which specify the amount of output the firm will produce as
a function of price. They characterize the equilibria of these supply functions
under uncertainty of the realized demand shocks. In other words, they answer
the question, “How do firms with identical costs but uncertainty around demand
determine how to report their supply functions in equilibria?” [2] studies supply
function equilibria when limiting the producers to linear supply functions, while
[13] limits even further to only consider scalar supply functions. Both of these
models are similar to ours in that the reported values resemble the per-unit
cost of production that the producers strategize over, but our allocation rule is
distinct.

[8] and [10] are the most relevant to our work. These works examine supply-
side bidding in the “inelastic demand” setting, where the demand is relatively
fixed, and the producers have asymmetric costs. [8] points out that the simple
mechanism that pays each bidder exactly their bid and allocates the resource
proportionally (exactly the reverse of the Tullock contest) cannot have a Nash
equilibrium, as the bids can grow to infinity while each firm’s respective cost
remains bounded, and uses this to motivate a constrained set of supply functions.
They then solve for the optimal allocation if the firms are price takers, along with
the Nash equilibrium when the firms are price anticipating, thus calculating the
efficiency loss of the strategic setting. Our work uses the same problem statement
but differs in our allocation and payment rules.

2 Model

We consider a standard procurement setting where there is a divisible unit of
work to be assigned to suppliers. There are n competing agents, indexed by 1,
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where each agent incurs a cost linear in their allocation parameterized by c;.
This cost can be interpreted as the resource cost agent ¢ has to pay to complete
a given amount of work. Let ¢ = (¢1, ¢a, ..., ¢,) denote the vector of agent costs.
We consider both the incomplete-information case, where costs are only privately
known with competing bidders having no prior knowledge of the costs of their
competitors, and the complete-information case, where c is common knowledge
to all bidders.

A procurement mechanism M consists of an allocation and payment rule
(x,p). The allocation rule determines how the work is split among the bidders,
and the payment rule dictates how much each bidder gets paid. Each agent i
simultaneously submits a bid b;, or potentially multiple bids, to the mechanism.
We denote the bid vector b = (b1, be, ..., b,) and use b_; to denote the bid vector
excluding bidder i’s bid. Agents have standard quasi-linear utilities.

Definition 1 (Player utility function). The player utilities are their pay-
ments less the cost incurred from their allocation, u;(b) = p;(b) — ¢;z;(b).

Based on the information agents have about each other, we consider dif-
ferent equilibrium concepts. In the incomplete-information case, where bidders
don’t have information about each other’s costs, we insist that the mechanism
be dominant strategy incentive compatible (DSIC), as otherwise, agents lack
information on how they should bid.

Definition 2 (Dominant-strategy incentive-compatible). A mechanism
is DSIC' if for every bidder i, for all b; > 0, and all bid vectors b_;, u;(c;, b_;) >
u; (b, b_y)

In the complete-information setting, where the full cost vector ¢ is common
knowledge to all the bidders, we relax our solution concept to pure-strategy Nash
equilibria (PNE).

Definition 3 (PNE). A bid vectm;l?) is a PNE, if for every bidder i, and all

alternate bids b, > 0, u;(b) > wu; (b, b_;)

We further include two ideal properties for mechanisms to satisfy. First, we
target Sybil-proof mechanisms, where agents cannot increase their utility by sub-
mitting bids under multiple identities. While this problem can be addressed by
the auctioneer knowing the bidder’s identities in traditional settings, this prop-
erty is especially important for permissionless mechanisms where the protocol
might not have any information on who the bidders are. Formally, a mechanism
is Sybil-proof if every bidding strategy that submits multiple bids is weakly
dominated by a bidding strategy that only submits a single bid.

Definition 4 (Sybil-proof). A mechanism is Sybil-proof, if for all bidding
strategies o;(c), potentially submitting multiple bids, there exists an alternative
bidding strategy o;(c) : Ry — Ry such that for all other bids b_;, u;(oj(c),b_;) >
ui(oi(c),b_;)
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Second, we desire mechanisms that are ex-post “safe,” where bidders have a
non-trivial bidding strategy (i.e., the strategy doesn’t guarantee an agent zero
utility regardless of others’ bids) under which they never regret participating in
the auction. This is similar in spirit to individual rationality, where bidders are
certain to have non-negative utility from reporting truthfully, but extended to
settings where the bidders are playing strategically. For example, a standard first-
price procurement auction is ex-post safe, since as long as an agent makes a bid
above their cost, they are guaranteed to have a non-negative utility. Mechanisms
that are not ex-post safe have higher barriers to entry, as bidders have to carefully
reason about other bidders’ strategies to avoid losing money and thus may not
enter at all.

Definition 5 (Ex-post safe). A mechanism is ex-post safe, if for every agent i,

there exists a bidding strategy o(c;) such that for all bid vectorsb_;, u;(o(c;),b_;) >

0 and there exists a bid vector b_; such that u;(o(c;),b_;) > 0.

We judge the efficiency of a mechanism by the social cost it incurs, i.e., the
total cost incurred by all agents who were allocated work. This is the objective
procurement mechanism that typically seeks to minimize. While our mechanisms
have goals beyond minimizing social cost, we still use it as a benchmark to
quantify how much efficiency our mechanisms give up for the sake of a more
robust supplier set.

Definition 6 (Social cost). The social cost of an allocation is the total cost
incurred by the agents in an allocation, SC(c,x) = > 1 | c;z;.

To quantify how efficient a given mechanism is, we benchmark the social cost
under equilibrium bidding versus the optimal social cost achievable. This ratio
is referred to as the price of anarchy. Note that in our model, the optimal social
cost will always be to allocate all the work to the agent with the lowest cost.

Definition 7 (Price of anarchy (PoA)). Let X be the set of all allocations
and Xy be the set of allocations induced at all pure Nash equilibria (PNE).
The price of anarchy is the ratio of the highest-cost equilibrium allocation to the
lowest-cost allocation,

Pod — maxyex,, SC(c,x)

mineex SC(c,x)

We evaluate the three procurement mechanisms in Section 3, Section 4, &
Section 5, respectively, along these axes.

3 DSIC Mechanism

We first consider the incomplete-information setting, where agent costs are pri-
vate. We start by defining a class of allocation rules parameterized by «, closely
resembling those of a Tullock contest [21] with negative exponents, which seek
to explicitly allocate work to higher-cost agents.
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Definition 8 (a-PARs). An a-proportional allocation rule takes the form,

b*Ol

zi(b) = 3
() ZJ lbj_a

for a > 0.

Recall in the procurement setting that bids correspond to costs, so bidding
higher results in a lower allocation, thus the need for a monotone decreasing
allocation rule in b;. Given that the allocation rule is monotone, we can imple-
ment it with a DSIC mechanism using Myerson’s lemma [16] using the standard
normalization that p;(oco,b_;) = 0. Letting D; = >, b, *, the integral form of
the payment rule is,

bi o1
pz( i z) 1+ Db + /bi 1+ D;t>

This payment rule represents the amount that the protocol needs to pay the
agents to elicit truthful reports b. Note that under this mechanism, the protocol
can be forced to pay an arbitrarily large amount. To cap the total payment,
we can modify the mechanism to only allocate work to the k lowest bids with a
maximum bid of b and the payment rule modified accordingly. This also improves
the social cost of the mechanism as allocation gets moved only towards the agents
with the lowest costs. Thus, social cost and total payments can be traded off with
decentralization according to the mechanism designer’s preference. The following
analysis can then be interpreted as assuming ¢; < b for all i and taking n = k.
We quantify exactly how these allocation rules trade off efficiency for dis-
tribution by showing that a-PARs are the unique solutions to minimizing the
1+1/a
objective Y1 | ¢;x
for details).

via a standard Lagrangian argument (See Appendix B.1

70(

Lemma 1 (Optimization problem). The allocation rule z; = c;*/377_, ¢;

is the solution to the following constrained optimization problem,

1 1
min g CiT /e
x€[0,1]" £

sth =1.
=1

Since z; < 1 and >.! ;z; = 1, the additional 1/a term in the exponent
pushes the x; closer together rather than placing all the weight on the lowest-
cost agent. Another interpretation is that the function penalizes concentrated
allocations by scaling their weight super-linearly in this objective. Thus, we can
see how « can be tuned to trade off efficiency and a decentralized provider set
since as a — 0o, we get that the objective converges to the standard social cost
benchmark that is minimized by a winner-take-all allocation.
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Two player allocations and social costs (c; =1)

B

allocations (x)
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social cost (x- c)
s
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Fig. 1. Allocations (left) and social cost (right) with n = 2 and ¢; = 1 under the DSIC
mechanism for various values of a.

We now bound the efficiency we trade off by optimizing for a more decen-
tralized set of providers compared to allocating all the work to the lowest cost
agent. Figure 1 shows the allocations (z1,23) for the DSIC mechanism in the
two-player game. We fix ¢; = 1 and vary ca. We also plot the social cost, which
for the two-player game is simply ¢;x1 +coxo. Notice that the minimal social cost
in this setting would arise from fully allocating the work to player one, leading
to a total incurred cost of 1. Also, notice how the value of o shapes the rate of
concentration of the allocation to the low-cost player. Since the mechanism is
truthful, the low-cost player will continue bidding ¢; = 1, while the high-cost
player will bid c2. As ¢z increases, ¢; * dominates the sum, and the full allocation
goes to player one. Lastly, the social cost is not monotone increasing in cs.

For the n-player game, the social cost increases in n because a larger amount
of the allocation is given to higher-cost players. The rate at which the social
cost degrades is highly dependent on «. For large values of «, the allocation
heavily concentrates around the lowest-cost agent regardless of how many other
agents there are. Theorem 1 bounds this scaling precisely. We show that the
instance with the worst-case social cost takes the form of [1,r,r,...,r] for some
r > 1 dependent on n and «. Intuitively, this setting implies that there is one
“efficient” player and n — 1 “inefficient” players. From this characterization, we
find the worst-case r to give a tight bound on the worst-case social cost.

Theorem 1. The DSIC mechanism (the a-PAR allocation rule and the Myer-
sonian payment rule) with n players has a worst-case social cost approrimation

ofl—ﬁ—(g)é for a > 1.

Proof. Note that both the allocation rule and social cost-objective are homoge-

neous functions of degree zero in ¢. Thus WLOG assume for all agents i, ¢; < ¢;11

with ¢; = 1. In this case, the optimal social cost is allocating the entire job to

agent 1 for a cost of 1. Thus, to show the approximation, it suffices to bound the

social cost of any instance with ¢; = 1. Since the mechanism is DSIC, we can
c. @

take each z; = ﬁ This implies the social cost under a cost vector of ¢ is
i=16j

n leoc

- 2ie1Ci
SC(c,x) = CiTi = T
; 2 i1 G
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For o = 1, this gives us that SC(c,x) =n/(1+3,., ¢; ') < n. Notationally, we
now refer to the social cost only in terms of the cost vector, SC(c). Given this,
we can show that for a > 1, the cost vector maximizing the social cost must be
of the form [1,r,...,7] (See Appendix B.1 for details).

Lemma 2 (Worst-case social-cost vector). Assuming « # 1, there exists
an r > 1 such that the worst-case social cost vector is of the form

Cworst = [1, ry7y .o r ],
——
n—1 players
From this lemma, we have the cost vector [1,r,r,...,r] for some r > 1 and the
1+(n—1)r1""

proof follows mechanically maximizing f(r) = over all r > 1. See

Appendix B.1 for full details.

1+(n—1)r—«

This bound shows that the social cost is not strictly increasing in each agent’s
costs. There is a certain threshold beyond which an agent’s increasing cost de-
creases their allocation at a faster rate than their increased cost harms efficiency.
For each n, the bound finds the worst-case r given that number of players and
«, and thus we can examine the asymptotics only as a function of n and «.

While this parameterization lets a mechanism designer precisely trade off
between decentralization and efficiency as they’d like, it has two key issues: (i) it
is not Sybil-proof, and (ii) it is hard for bidders to reason about and difficult to
implement on-chain. To see that the DSIC mechanism is not Sybil-proof, notice
that a bidder can simply make infinite bids with a constant cost of C. Each
additional bid increases their allocation at the same cost.

Regarding the complexity of the payment rule, while the mechanism is DSIC,
there is a large empirical literature showing that bidders don’t play dominant
strategies in DSIC mechanisms even when the mechanism is relatively simple,
such as a second-price auction [11, 7, 6]. Furthermore, the payment rules required
to implement the allocation rules as described would be quite complex and re-
quire numerical approximations, leading to complex code for the auction mecha-
nism. One would expect bidders to fail to understand that these mechanisms are
truthful and, hence, bid sub-optimally. In Section 4, we first give a mechanism
that is Sybil-proof but still hard for bidders to reason about; in Section 5, we
give a mechanism that is also not Sybil-proof but easier for bidders to participate
in.

4 Tullock Procurement Contests

To construct a Sybil-proof mechanism that avoids winner-take-all equilibria, we
take inspiration from the literature on Tullock contests. Tullock contests refer to
a class of games where agents compete for a good via making costly investments
[21]. The good is typically allocated randomly proportional to agents’ invest-
ments, but all agents have to pay regardless of whether they win or not. Usually,
in Tullock contests, the loss in efficiency from a suboptimal agent winning the
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good is a downside. However, in our case, we will use this fact to implement a
non-winner-take-all equilibrium. We turn our setting into a Tullock contest by
having the procurer put up a budget B as a reward for bidders to compete over,
which is presented as a “Proof Contest” in [19]. Agents then submit bids, and
both the work and budget are allocated proportionally to agents’ bids. However,
agents get their bid deducted from their reward regardless of how much reward
they are allocated. Under this mechanism, we allow bidders to have negative
utilities where they potentially have to pay the auctioneer.

Definition 9 (Tullock procurement contest (see also [19])). A Tullock
procurement contest is given by the following allocation and payment rule pa-
rameterized by a budget B:

b;
E?:l b;

This implies that agents have utilities given by

b;
i(b)==—(B—qa)—b
P =g, )

From this, we can see that Tullock contests are Sybil-proof, as a bidder can
always submit a single bid to get the same payoff they would have from multiple
bids.

Lemma 3. Tullock procurement contests are Sybil-proof.

For proof, see Appendix B.2. We now characterize the equilibrium of these mech-
anisms and how they achieve a near-optimal price of anarchy (PoA). We start
by recalling the standard Tullock contest setting and well-known results charac-
terizing their equilibrium and PoA.

Definition 10 (Tullock contests (from [21])). A Tullock contest is defined
by a set of n agents, each having value v; for some good. Each agent simultane-
ously submits a bid b;, and the good is randomly allocated proportional to bids,
with every agent paying their bid regardless of whether they won.

Notice that a Tullock procurement contest with a budget of B is a standard
Tullock contest where each agent i has value max{B — ¢;,0} for winning the
item. Thus, we can use the following well-known results characterizing the PNE
of Tullock contests to help analyze the equilibrium for Tullock procurement
contests.

Lemma 4. (from [20]) Tullock contests where at least two agents have strictly
positive value for the good have unique PNEs.

Lemma 5. (from [9]) At the equilibrium allocation % induced by the PNE of a
Tullock contest, Y1 | v;¥; > 2 max{v;}.
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Tullock equilibrium allocations and social costs (c; =1,B =10)

53

allocations (x)

social cost (x-¢)

1 2 3 4 s 6 7 8 9

Fig. 2. Equilibrium allocations and the resulting social costs in the Tullock procure-
ment mechanism as a function of co with ¢; = 1 and various values of n. Note that we
only show z2 in the left subplot because 2 = 3 = ... = z,,.

Lemma 6. (from [1]) Let F(x) =), max (1 - O) and let v* be the solution
to F(v*) = 1. Then the equilibrium allocation & of a Tullock contest is given by

Z; = max (1 — %*,,O)

Figure 2 shows the equilibrium allocations and resulting social costs for the
Tullock contest as a function of ¢y for the cost vector ¢ = [1,¢a, ..., o). Various
values of n demonstrate the different rates at which the allocation concentrates
on player 1. The right subplot shows that as n increases, the maximal social
cost increases. Intuitively, this arises because larger portions of the allocation
are given to the high-cost players.

From Lemma 4, we have that as long as there are two agents such that
B > ¢;, the Tullock procurement contest has a PNE. Then, applying Lemma 5,
we can bound the PoA of Tullock procurement contests as a function of B and
Cmin Where ¢, is the lowest cost of any agent.

Lemma 7. Let v = B/¢min. Then the PoA of the Tullock procurement contest
ig 13
1

Proof. Let & be an allocation induced by the equilibrium of the Tullock contest.
From Lemma 5, we have

n n

Z(B — )T > —(B — ¢min) = Zciifi <

=1 =1

B — 3Cmin
4

oY)

The lemma then follows from the optimal social cost being ¢, .

Hence, we see that the PoA is minimized when B is slightly above the second
lowest cost out of all the agents. This corresponds to only the two bidders with
the lowest costs bidding when the total reward is sufficiently small. On the con-
trary, as B grows large, even the highest-cost bidders participate. For sufficiently
large B, all bidders receive an approximately equal allocation at equilibrium as
the ratio of their values shrinks. Thus, a protocol can increase B to trade off
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between efficiency (and total payment) and how many bidders they desire to be
competitive at equilibrium (See Appendix B.2 for details).

Lemma 8. In a Tullock procurement contest with equilibrium allocation x, for
1

all agents i, imp_y00 T; = 7

Note that while Tullock contests are Sybil-proof and implement near-optimal
equilibria alongside decentralized allocations, bidders may find them problem-
atic. In particular, Tullock contests are not ex-post safe. Regardless of a bidder’s
cost and the budget, for any non-zero bid b;, there exists a bid vector b_; such
that (B—c¢;)z;(b) = (B—c¢;) #ﬁm < b; hence giving them a negative utility.
This means that bidders participJating in such a mechanism must be sophisti-
cated enough to reason about others’ costs and bids to avoid losing money by
participating.

In the following section, we will give a mechanism that is ex-post safe and has
a simple payment rule, alleviating the difficulty of participation. However, this
mechanism is no longer Sybil-proof, making it unsuitable for many decentralized

applications.

5 Paid-as-Bid Mechanism

In this section, we consider a hybrid mechanism between the DSIC and Tullock
contest mechanisms of the previous two sections. In particular, we use the same
a-PAR allocation rule (Definition 8) but a simpler payment rule inspired by the
all-pay-as-bid Tullock rule. Since a-PARs are reverse auction allocation rules,
we consider the payment rule where the bidder is paid proportionally to their
bid. These mechanisms are motivated by simplicity of implementation, where it
is clear to users how their payment was derived from their bid and allocation.
This is in contrast to the DSIC mechanism, where agents find it hard to reason
about their payments even though truthful bidding is a dominant strategy.

Definition 11 (Paid-as-bid payment rule). The paid-as-bid rule pays each
producer i, p; = b;x;.

Plugging this payment rule into the player utility function (Definition 1), we
can rewrite i’s utility as

ui(bi, b,Z) = (bl — Ci) . l'z(b)

As the mechanism is paid-as-bid (rather than the Myersonian payment rule),
it will not be DSIC. Thus, we consider the PNE as the solutions of interest
for various cost vectors, ¢, in the complete-information setting. Using first-order
conditions and a standard fixed-point argument, we can show that a unique
PNE always exists for this mechanism regardless of the private costs (See Ap-
pendix B.3 for details).
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Theorem 2 (Unique PNE). The mechanism defined by an a—PAR with
a > n/(n — 1) and the proportional-to-bid payment rule has a unique PNE
characterized implicitly by the bid vector b where

B aci(l —x;)

= aiea) o1 Vel (1)

Two player equilibrium allocations and social costs (c; = 1)

allocations (x)

=

— xl@=3) — x(a=3) — a=3 - a=4 -= a=5
e xl@=4) . xla=4)
== xi(@=5) == xla=5)

Fig. 3. Equilibrium allocations for the two-player game and corresponding social costs.
The left plot shows the 1/a and 1 — 1/« bounds for the lower and higher allocations,
respectively, as horizontal lines.

The exact equilibrium bids and allocation can be computed numerically, given
this implicit characterization for different cost vectors. See Appendix B.3 for a
depiction of this in the two-player game. A critical feature of the allocations at
equilibrium is that they are bounded based on the size of @ as 1 < 1—1/« and
x9 > 1/a, which we describe in the following corollary.

Corollary 1 (Bounded allocations). Under the equilibrium bid vector, b,
each agent’s allocation is bounded above as follows:

z;(b) <1—-1/a.

Proof. From the characterization of the equilibrium bids (1), b; > 0 implies
a(l—2z,)—1>0 = z;<1—-1/a.

Figure 3 shows the equilibrium allocations and social costs for the two-player
game. Again, we fix ¢; = 1 and increase c3. We show various values of « to
demonstrate (i) the increase in the curvature of the a-PAR allocation rule re-
sulting in faster concentration of the allocation on the lower-cost player, and (ii)
the convergence of the allocations to 7 — 1 — 1/a and 22 — 1/« in the left
subplot (shown as horizontal lines with matching line styles). The right subplot
shows the scaling of the social cost in cs.

Note that, without additional constraints, the paid-as-bid mechanism can
result in arbitrarily high payments. This is easy to see with Corollary 1; consider
the two-player game with a = 3, ¢ = 1, and ¢ — oo. We know that x; —
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2/3,x9 — 1/3, and by individual rationality, we must pay player two more than
ca-xo. Thus, the total payment could be unbounded. As in the DSIC mechanism,
this can be resolved by setting a reserve price with a maximal reportable cost
of b. However, this would change the equilibrium characterization given above.
Characterizing the new equilibrium is not straightforward, as bidders with costs
below b might still have bid above b at equilibrium. Thus, we leave characterizing
the equilibrium with a reserve for future work and focus our analysis on the
mechanism without a reserve.

We now turn our attention to estimating the worst-case scaling of the social
cost, which is equivalent to the price of anarchy when we fix ¢; = 1. To bound
the worst-case, we again characterize the worst-case cost vector ¢ as we did in
Lemma 2. We first give a monotonicity lemma to show that for a fixed n and
«, the social cost at equilibrium increases as any agent’s cost increases (See
Appendix B.3).

Lemma 9. Given cost vectors ¢ and ¢’ that are identical except for some i where
¢ > ¢, the equilibrium social cost under ¢’ is higher than under c.

Price of Anarchy as a function of C (a = 4)

Fig. 4. Price of anarchy scaling in C' = ¢max/cmin for a = 4 and various values of n.

Combining this with the fact that both the equilibrium allocation and social
cost are homogeneous in the cost vector, we can characterize the instance that
gives the worst PoA parameterized by the ratio of the maximum-cost bidder to
the minimum-cost bidder.

Corollary 2. With n bidders where Cmaz/Cmin = C, the worst-case PoA is
realized with the cost vector [1,C,C, ..., C].

From Corollary 1, we know the PoA will always be in the range [C/«, C)|
because the lower-cost players will always be allocated at least 1/« in aggre-
gate. We also know that as n increases, the PoA goes from C/a to C' because
each additional player is allocated a non-zero amount, which pulls some of the
allocation from the low-cost player. We use this corollary along with the PNE
characterization given in Equation (3) to numerically calculate the PoA as a
function of C, v, and n. Figure 4 plots this PoA as a function of C' for a = 4 and
various values of n. As n increases, the PoA shifts from the C'/« scaling regime
(shown as the dotted line) to C scaling (shown as the dashed line).
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6 Conclusion

This work serves as a starting point for formalizing procurement mechanisms
that do not optimize purely for efficiency. While we explore a range of mecha-
nisms in this article, none is a panacea for all the desiderata presented in Sec-
tion 2. The DSIC mechanism in Section 3 has serious drawbacks of not being
Sybil-proof and having complex payment rules, each of which is addressed in
isolation by the Tullock and the paid-as-bid mechanism of Sections 4 and 5,
respectively. Tullock contests are Sybil-proof at the cost of not being ex-post
safe; the paid-as-bid mechanism has a simple and interpretable payment rule
structure, but loses Sybil-proofness. The DSIC and paid-as-bid mechanisms, by
default, have arbitrarily high payments, but can both be modified to bound
the protocol’s cost. As such, the immediate domain for future theoretical work
is proving the existence or non-existence of a procurement mechanism that is
Sybil-proof, and ex-post safe with non-winner-take-all equilibria.

We believe that this work is well-motivated as blockchains continue to ma-
ture and develop alternative roles for nodes participating in the network. For
example, Ethereum is considering migrating to a ZK-proof-based execution en-
vironment, where each block is built along with a proof of validity, and attesters
are only required to verify the proof rather than execute the transactions in their
entirety. This paradigm shift could introduce the role of “provers” explicitly into
consensus, and this work shows how different modeling choices could lead to
different mechanisms. If the cost of generating a proof continues to drop (it is
currently estimated to be about 5 cents per block) and is publicly known (e.g.,
through proof data aggregation layers like https://ethproofs.xyz/), then either
the Tullock contest or the paid-as-bid mechanisms might be the best choice.
When considering the possibility of a Sybil gadget (e.g., staking) that overlays
the actual procurement mechanism, and the explicit goal of making proving
decentralized, choosing an a-PAR might be well motivated. We hope that prac-
titioners and builders contribute to the dialogue and help narrow down the right
modeling decision for decentralized procurement.

The blockchain industry has well-established norms for open-source software
and public data, which affords excellent visibility into mechanisms being imple-
mented in production today with real money on the line — an excellent empirical
testbed. As the nascent prover markets (e.g., Succinct, RISC Zero, and =Nil;)
evolve, measuring the practical bidding strategies and resulting allocations will
provide a key empirical grounding for this work. Measurements for the num-
ber of bidders participating, the size of available rewards, and the hardware
costs will all inform the theoretical study of permissionless procurement mecha-
nism design. This data will also help ground which of the presented mechanisms
may be most practical. For example, if it turns out that the prover set is rela-
tively small and non-anonymous, using a non-Sybil-proof mechanism (or adding
a Sybil-proofness gadget like staking) may be good enough in practice. We give
an overview of future modeling work in Appendix A.
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A  Future Work

Model extensions While a-PARs allow the designer to trade off between distribu-
tion of the allocation and efficiency, it remains a subject of debate as to the exact
metric of fairness to optimize for. Lemma 1 demonstrates that a-PARs minimize
a scaled social cost, but there are other notions of fairness (e.g., Nash Social
Welfare [18]) that may be of interest. More generally, micro-founding fairness in
blockchain settings remains important in justifying the value of decentralization
that is often cited as the goal of existing systems. Whether the decentralization
offers unique properties to the system (e.g., censorship resistance) or aims to
achieve better user outcomes (e.g., more competition and thus lower prices), it
is often accepted as an unquestioned axiom in blockchain protocol design without
proper justification.

Extending the model to the Bayesian setting is also an open problem. We
justify the use of the complete-information setting and the study of PNE because
the open, repeated nature of the auctions may allow providers to learn about
their competitors’ private costs. While this may be true, modeling this knowledge
in the incomplete-information setting as defining a prior over the competitors’
costs and studying the Bayes-Nash Equilibria would yield different outcomes that
are worth considering. Further, while we use the repeated nature of the game
to motivate trading off efficiency for a more distributed allocation, explicitly
modeling the dynamics in a repeated game would be an important way to sanity-
check the effectiveness of the mechanisms we propose.
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B Supplementary Material

B.1 Section 3 Proofs

-«

Lemma 10 (Optimization problem). The allocation rule z; = c; /> "
is the solution to the following constrained optimization problem,

1 1
min E T +1/a
x€01]”

s.t., le =1.
i=1

j=16;

Proof. Let

n cllerl/oz
r -y

With the constraint Z;’:l x; = 1, we have the Lagrangian,

Lx)=Fx)+A[1- ixj

Taking partials, we have

OL _ e a=0 = wm=(2)
81‘,‘ e ! C;

Combining these with the full allocation constraint, we have
n o 1/«
A 1
=1 \% =16

Solving for the final allocation, we have,

o 1/« @ —a
xi = ()\> = 71 /Ci = 701‘ .
Ci 216" 25=16 "

Lemma 11 (Worst-case social-cost vector). Assuming o # 1, there exists
a T > 1 such that the worst-case social cost vector is of the form

Cworst = [1, ry7y .. r].
|

n—1 players
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Proof. Let the cost maximizing vector be given by c*. Consider the function
gx(s) representing the social cost as bidder k’s cost varies, holding the other
bidders’ costs fixed, i.e. gr(s) = SC([c1, ..y Ck—1, S, Cht1, ---, Cn]). Note that for
k > 1, we must have g;(cj) = 0. Let G_; = >, ¢;“ and H, = Zﬁél ]
and. Then, we can calculate

(1—a)r=*(x=*+G_;) + (2" + H_;)(ax™>71)

g;(l’) = (l‘_a ¥ G)2
2724+ (1- )Gz +aH_jz=t
(z=*+G-)?
2o (27 4+ (1 - )G_jz +aH_;)
- (1+ G o)

Thus for all ¢ > 1, taking g.(c;) = 0 gives us
(1 —oz)cich_a +OLZC}_Q =0
J#i i

1 «@
=16 then we can rewrite

Nowlet G=> . ,c;%and H=)

i>15
gilc)=c; *+(1—a)ei(G—c;*+ 1) +a(H —c; *+1).

Note that c;~* — (1 — a)¢; - ¢;“ — acl~® = 0 simplifying

gi(c) =1 —a)1+G)ef +a(l+ H) =0.

Since we assume « # 1 and this holds for all ¢ > 1, we have that for all ¢,j > 1,

*
Ci_cj'

B.2 Section 4 Proofs
Lemma 12. Tullock procurement contests are Sybil proof.

Proof. Consider a bidding strategy o;(c) = (b}, ..., b¥). Then let o(c) = Zle a;(e).
Let the sum of the other agents’ bids be 5. Then we have that

u;(oi(c), by 22 <ZZ 1bj (B —ci)—bg) = u;(o}(c),b_;).

Lemma 13. In a Tullock procurement contest with equilibrium allocation x, for
all agents i, imp_, o T; =

EIERS)

Proof. We first show that for large enough B, all agents bid and hence have a pos-
itive allocation at equilibrium. Consider the function F(B,z) = > max{l —
+2—,0} modified from Lemma 6 for our setting. Define z*(B) to be the solution
to F(B x*(B)) = 1. It suffices to show B — ¢, > 2*(B) for sufficiently large

B. Note that for all i, limp o, Z5%mas = 1, thus limp 0 > iy 1 — B5mee <1
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and B — ¢par > ™ (B) since F (B, ) is monotone decreasing in z. From this, for
sufficiently large B, we have that all bidders are active, allowing us to explicitly
solve for z*(B):

*(B -1
R ) PR S Rt S
i=1 B—c 2im1 By
It follows that limpg_, o %Ef) = "T’l Then again using Lemma 6 again, we have
that
*(B 1
lm & = Jim 1— 2B _ 1
B—oo B—oo B — C; n

B.3 Section 5 Proofs

Figure 5 shows the equilibrium bids and allocations, denoted b and Z, respec-
tively, for the two-player game. With ¢; = 1, we increase cy to demonstrate
how the equilibrium bids and allocations evolve. For comparison, we include the
honest bids and allocations (shown as solid lines in each subplot) arising from
the truthful bidding in the DSIC mechanism from Section 3.

Two player honest and paid-as-bid equilibrium bids and allocations (c; =1, a =5)

’ 1.0
7’
7
6 - ///
/’/ e ~ 1T 7T | | _Lo-f——f==f--

> /// ,’, x |/ _ae=mmTT
—_ -
) PRd ’,/ é) 0.6
~ 4 -7 - o
7] P prs 8
© -
8 7 S 04

3 // - o -~

s = S —
RoCie c | \ @ TTTmememmmmee
2 4’/’ 0.2
%
1 0.0
1.0 15 20 25 30 35 40 45 50 1.0 15 20 25 30 35 40 45 50
C2 (%]
— = equil. bids (b;) = honest bids (c;) —— honest allos (x;) == equil. allos (X;)
—— equil. bids (b)) — honest bids (c1) == equil. allos (X;) —— honest allos (x3)

Fig. 5. Honest and equilibrium-induced bids (for the paid-as-bid payment rule, Defini-
tion 11) and allocations for the two-player game with a = 5. We see that the equilibrium
allocations approach their limits of 1/5 and 1 —1/5 as ¢z increases. Also note that the
equilibrium bids for player one increase in c2, while honest bids remain constant at
CcC1 = 1.

Theorem 3 (Unique PNE). The mechanism defined by an a—PAR with o >

n/(n — 1) and the proportional-to-bid payment rule has a unique PNE charac-
terized by the bid vector b.
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Proof. Let b = (b1, ...,by) be an bid vector and let o; = ., é Then we can
rewrite wu;(b;,b_;) = (b; — ¢;) (ﬁ) From this, we can calculate the first

order conditions for b to be an equilibrium bid vector:

8ul(b“b_,) . 1+ b?Ol =+ abf‘_loi(ci — bl)
ob; B (14 b5 0;)2
<— 14+ b?Oi + ab?‘floi(ci — bl) =0.

=0

Note that this expression is strictly increasing for 0 < b; < ¢ and strictly
decreasing for b; > c¢. Since u/(0,b_;) = 1 this implies ?;g; has a unique zero
corresponding to a global max for u;(b;, b_;). This implies satisfying the first-
order conditions is sufficient for b to be an equilibrium. Then, from the definition

of 0o; and our allocation rule x, we have

1 1
— =x; <= bloy=——1.
1+b?0i i i 01 xX;

Substituting this into our first-order condition gives

1 | (1 — s
+acz(_1>_a+azo<:>bi:acl(m’) (2)
xT; bz i «

=
|
Q

Letting B = )" | b; %, and noting z; = - = b; = (x;B)~“ this gives

i=1"1

1
acie (1 —x;) 1
a(l-z;)—1 B=

Vi € [n].
It follows that for z to denote an equilibrium allocation

1 1
cixi“ (]. —"El) . Cj.’If;x (1 —$J>
al—z;)—1 a(l—z;) -1

Vi, j € [n]. (3)

Assume that such an allocation # satisfying (3) exists, then we show that
setting b according to (1) with z; = &; is consistent with Definition 8. Let
ozciiié (1—x;)

a(l—z;)—1
bining this with > | #; = 1 gives (ax)® = 1/37 ,b;® in turn showing
B =b;"/ 30 b;* as desired.

Now, to show that a unique PNE exists, it is sufficient to show that there is

a unique allocation Z satisfying (3). Define the function

= k. Then from manipulating (1) we get #; = (ak/b;)*. Com-

za(1—2)

J@) =i =1

(4)

Then an allocation vector satisfying equation 3 is equivalent to finding a vector
in the unit simplex z € A"~! such that ¢;f(z;) = ¢;f(z;) Vi,j € [n]. Further
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note that for z € [0,1 — 1/a), f(x) is strictly increasing with f(0) = 1 and
lim,_,1_1/q f(x) = oo. It follows that the inverse of f, f~! : [0,00) = [0,1—1/c)
is well defined. Thus for a fixed d € [0,1 — 1/a), let g;(d) = f~! (%f(d)) with
g(d) = Y, gi(d). f being continuous and strictly increasing implies that g is
continuous and strictly increasing. Thus, g(0) = 0 and ¢g(1/n) > 1 implies there
exists a unique d* € (0,1/n] such that > . | g;(d*) = 1. Note that g(1/n) is well
defined since @ > n/(n — 1). We can then take &; = ¢;(d*) Vi € [n] to get the
unique equilibrium allocation.

Lemma 14. Given cost vectors ¢ and ¢’ where ¢ and ¢’ are identical except for
some i where ¢, > ¢;, the equilibrium social cost under ¢’ is higher than under
c.

Proof. Let x be the equilibrium allocation corresponding to a cost vector c.
WLOG scale ¢ so that ¢; = 1, since the equilibrium allocations are invariant
under linear scalings of c. Define the function H(c) = Y"1 | ¢;z; to be the social
cost of the equilibrium allocation under c. Then it suffices to show 8H(C) > 0 for
all i € [n],i # 1. Recall from the proof of equilibrium existence, We can define
f(x) :=az*(1 —2)/(a(l —x) — 1) and g;(x) := f~'(f(x)/c;) so that letting z*
be the solution to Y . ; g;(z*) = 1, at the equilibrium allocation z, ; = g;(z*)
for all agents . Thus, we can rewrite the social cost at equilibrium as

n

H(c) = Z cigi(z™)

i=1

‘We then have

OH(c) . ~~ . (0gj(z*)  g;(z*) dx*
Oc; —gz(x)—l—ZcJ( Oc; + Ox Oc; )’

j=1
We can derive the following partial derivatives for i > 1,
. * / * * 1 *
0g;(x*) _ f(x*) ox (-1t f(z*) and
aci ij/(ﬁi) 0ci Cj ij/(l'i)
00,w7) _ @) oy (F@)) __SW)
Ox ¢ ¢ cif'(z5)
Plugging these into the previous expression and simplifying gives us
OH ox* "(z*) Ox*
© s Z ) o )
Oc; c;f'(z;) Oc;i  cif'(x;) ¢

9z o~ f(x7)
Oc; = f'(xj)

=z +
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Since f'(z) > 0 for all x € [0,1 — 1/a), all that remains to show is %% > 0. We
have that x* is defined implicitly by the equation

Zgi(w ) =

Taking the derivative of this with respect to ¢; gives us

n n dg;(z”*
Z dgj(x*) = Og;(x*) O0x* ox* ijl %i)
+ — =0 = =
; oc; ox ¢ oc; s 9g; (z*)
J=1 j=1 Ox

From our previous derivations, we can compute

0g;(z f(z")
> 3@ 861 z::f I

J=1

5o 2t z

j=1

‘¢ f’ 1:]
Finally, we have

. JE) ety G
or o f (=) ac; =1 ¢; f'(z;)

) n [/ (x*
oe Doy
—1
f * n or*
—1
oz f(z*) = 1

=

dci 2} f' (i) f'(w1) Z:: ¢ f'(¢))



